单气泡池沸腾传热中的重力效应数值模拟
Numerical simulation of gravity effect on heat transfer in single bubble pool boiling
查看参考文献27篇
文摘
|
本文数值模拟了不同重力条件下饱和状态的FC-72在厚度5 mm的SiO_2固壁上的单气泡池沸腾传热现象及相应的气泡动力学和传热性能。固壁底面给定均匀过热度10 K,其瞬态热响应被考虑在内。通过多个气泡周期的计算,得到了准稳态的沸腾过程。结果表明,在小热流密度下,气泡脱落直径Db反比于重力的1/2次方,且与Fritz模型一致;气泡脱落频率f则正比于重力。传热特性存在2个明显不同的区域,即重力相关区和重力无关区,其分界位置约为0.03g0:高于该临界重力时,热流密度与重力相关,恒定过热度下热流密度与重力呈确定的指数函数关系;小于该临界重力时,热流密度与重力无关。临界重力值对应于基于Laplace长度的无量纲加热器长度约2~3之间,与Raj-Kim-McQuillen重力标度模型建议的2.1相近。重力相关区标度指数随着过热度增大而单调增大,但明显大于Raj-Kim-McQuillen重力标度模型预测结果。研究结果还表明固壁瞬态热响应对重力无关区传热性能的影响比重力相关区更为明显。 |
其他语种文摘
|
The bubble dynamics and heat transfer in single bubble pool boiling of saturated FC-72 at different gravity levels are studied numerically,having transient thermal response of the heated SiO_2 wall with a thickness of 5 mm.A constant and uniform temperature corresponding to a superheat of 10 K is prescribed at the bottom surface of the solid wall.Multi-cycle simulations are conducted and quasi-steady state of boiling process is achieved.It is observed that the bubble departure diameter,inversely proportional to the square root of gravity,is consistent with the Fritz model,and the bubble frequency is proportional to the gravity.There are two regions with obvious differences in terms of heat transfer,namely a gravity-dependent region and a gravity-independent region.The corresponding transition or critical value of the gravity is about 0.03g0.The heat flux has a power law relation with the gravity at constant superheat if the gravity is larger than the critical value,while this trend will break down when gravity is less than the critical value.The boundary between these two regions is located in the range of dimensionless heater length based on the Laplace length from 2 to 3,which is close to 2.1 proposed by Raj-Kim-McQuillen model.In the gravity related region,the exponent of the power law relation increases monotonously with the superheat,but its value is obviously larger than the prediction of Raj-Kim-McQuillen model.It is also found that the transient thermal response of the solid wall has a more obvious effect on the heat transfer performance in SDB region than in BDB region. |
来源
|
空气动力学学报
,2021,39(3):121-129 【核心库】
|
DOI
|
10.7638/kqdlxxb-2021.0039
|
关键词
|
核态池沸腾
;
重力效应
;
传热
;
气泡脱落尺寸
;
气泡脱落频率
|
地址
|
1.
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
4.
西安交通大学, 动力工程多相流国家重点实验室, 西安, 710049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-1825 |
学科
|
力学;能源与动力工程 |
基金
|
国家自然科学基金联合基金项目
;
中国载人空间站工程科学实验项目
|
文献收藏号
|
CSCD:6995873
|
参考文献 共
27
共2页
|
1.
杜王芳. 核态池沸腾传热现象中的重力标度规律.
科学通报,2020,65(17):1629-1637
|
CSCD被引
3
次
|
|
|
|
2.
Rohsenow W M. A method of correlating heat transfer data for surface boiling of liquids.
Transactions of the ASME,1962,84:969-976
|
CSCD被引
1
次
|
|
|
|
3.
Straub J. Boiling heat transfer and bubble dynamics in microgravity.
Advances in Heat Transfer,2001,35:57-172
|
CSCD被引
14
次
|
|
|
|
4.
Raj R.
Development of a boiling regime map and gravity scaling parameter for pool boiling heat transfer,2010
|
CSCD被引
1
次
|
|
|
|
5.
Raj R. Subcooled pool boiling in variable gravity environments.
Journal of Heat Transfer,2009,131(9):091502
|
CSCD被引
7
次
|
|
|
|
6.
Raj R. Gravity scaling parameter for pool boiling heat transfer.
Journal of Heat Transfer,2010,132(9):091502
|
CSCD被引
3
次
|
|
|
|
7.
Raj R. On the scaling of pool boiling heat flux with gravity and heater size.
Journal of Heat Transfer,2012,134(1):011502
|
CSCD被引
5
次
|
|
|
|
8.
Raj R. Pool boiling heat transfer on the international space station: experimental results and model verification.
Journal of Heat Transfer,2012,134(10):101504
|
CSCD被引
7
次
|
|
|
|
9.
Wang L. Prediction of pool boiling heat transfer for hydrogen in microgravity.
International Journal of Heat and Mass Transfer,2016,94:465-473
|
CSCD被引
4
次
|
|
|
|
10.
Wang X L. Experimental study of the heater size effect on subcooled pool boiling heat transfer of FC-72 in microgravity.
Experimental Thermal and Fluid Science,2016,76:275-286
|
CSCD被引
5
次
|
|
|
|
11.
Ma X J. Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions.
International Journal of Heat and Mass Transfer,2017,114:453-457
|
CSCD被引
5
次
|
|
|
|
12.
Feng Y. Numerical study on saturated pool boiling heat transfer in presence of a uniform electric field using lattice Boltzmann method.
International Journal of Heat and Mass Transfer,2019,135:885-896
|
CSCD被引
6
次
|
|
|
|
13.
Stephan P. A new model for nucleate boiling heat transfer.
Heat and Mass Transfer,1994,30(2):119-125
|
CSCD被引
9
次
|
|
|
|
14.
Son G. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface.
Journal of Heat Transfer,1999,121(3):623-631
|
CSCD被引
21
次
|
|
|
|
15.
Zhao J F. Numerical simulation of single bubble pool boiling in different gravity conditions.
Proc. 6th Int. Conf. Fluid Mech,2011
|
CSCD被引
1
次
|
|
|
|
16.
Yi T H. Numerical investigation of bubble dynamics and heat transfer in subcooling pool boiling under low gravity.
International Journal of Heat and Mass Transfer,2019,132:1176-1186
|
CSCD被引
4
次
|
|
|
|
17.
Fuchs T. A transient nucleate boiling model including microscale effects and wall heat transfer.
Journal of Heat Transfer,2006,128(12):1257-1265
|
CSCD被引
7
次
|
|
|
|
18.
Aktinol E. Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid.
Microgravity Science and Technology,2012,24(4):255-265
|
CSCD被引
5
次
|
|
|
|
19.
Zhang L. Influence of heater thermal capacity on pool boiling heat transfer.
Journal of Computational Multiphase Flows,2014,6:361-375
|
CSCD被引
1
次
|
|
|
|
20.
Zhang L. Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling.
Applied Thermal Engineering,2015,88:118-126
|
CSCD被引
7
次
|
|
|
|
|