文摘
|
基于分形理论,以GIS技术为支撑,利用回转半径法测算了广东省全域及其所辖21个地级市公路交通网络半径维数Dn分枝维数Db和对应相关系数R^2。依据广东省公路交通网络的特点,将其辖区分为四个子区域,珠三角、东部沿海、西部沿海和粤北地区,分析其半径维数和分枝维数的空间分布特征。研究表明,珠三角地区为广东省公路交通网络密度最大、结构最复杂、功能最完善、连通性最优的区域;以珠三角为中心,广东省公路交通网络分形半径维数和分枝维数随距离增大而衰减,沿海衰减程度微弱,粤北衰减程度较大。结果显示,半径维数和分枝维数结合能够更为合理系统地分析交通网络分形特征的时空差异特性。 |
其他语种文摘
|
In the early 1990s Frankhouser discovered the power-law relationship between the length L(r) of railway networks and the radius (r) of an area, and calculated the radial dimension value when he investigated the sub-railway in Stuttgart. Because of the scale-invariance in a statistical sense, fractal theory is a suited method for the distribution of highway transportation networks. Based on GIS technology, radial dimensions ( DL ) , ramification dimensions (Db) and correlation coefficient (R2) of the distribution of highway transportation networks are measured and calculated in the 21 municipalities of Guangdong Province. According to the spatial pattern of highway transportation networks and the development characters of infrastructure, the province is zoned into four subareas (Pearl River Delta Area, East Coast Area, West Coast Area and Northern Guangdong Area) for analyzing the fractal characteristics of highway transportation networks. Pearl River Delta Area is the region with the biggest density, most complex structure, best connectivity and most mature function of transportation networks in the whole province. The fractal dimensions of highway transportation networks decay with distance from the Pearl River Delta Area to the fringe areas, while the decaying degree is lower in Coast Area and higher in North Guangdong Area. The fractal dimension value approximate 1.7 is likely a suitable indicator for the perfectness of transportation networks morphology, structure and function. The fractal dimension of Dongguan ( 1. 6287) is greatly approaching the indicator; therefore, it can be determined that the transportation network is rather mature in this municipality. The results obtained show clearly, the combination of radial dimensions and ramification dimensions enables the comprehensive analysis of spatial pattern characteristics of density, structure, connectivity and function of transportation networks. |
来源
|
地球信息科学
,2008,10(1):26-33 【扩展库】
|
关键词
|
分形理论
;
交通网络
;
半径维数
;
分枝维数
;
广东省
|
地址
|
同济大学测量与国土信息工程系, 上海, 200092
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
数学 |
基金
|
国家教育部新世纪优秀人才支持计划
;
上海市青年科技启明星计划
;
现代工程测量国家测绘局重点实验室基金
|
文献收藏号
|
CSCD:3201377
|
|
1.
栾元重. 塌陷区地形分形生成方法与应用.
地球信息科学,2006,8(4):111-116
|
CSCD被引
3
次
|
|
|
|
2.
Frankhouser P. Aspects fractals des structures urbaines.
L'Espace Geographique,1990,19(1):45-69
|
CSCD被引
16
次
|
|
|
|
3.
刘继生. 交通网络空间结构的分形维数及其测算方法探讨.
地理学报,1999(54):471-478
|
CSCD被引
63
次
|
|
|
|
4.
黄佩蓓. 基于GIS的城市交通网络分形特征研究.
同济大学学报,2002(30):1370-1374
|
CSCD被引
1
次
|
|
|
|
5.
刘妙龙. 上海大都市交通网络分形的时空特征演变研究.
地理科学,2004(24):144-149
|
CSCD被引
1
次
|
|
|
|
6.
冯永玖. 基于GIS的公路工程智能信息平台系统分析与设计.
交通与计算机,2004(22):61-64
|
CSCD被引
1
次
|
|
|
|
7.
王沫然.
Matlab与科学计算,2000:139-140
|
CSCD被引
2
次
|
|
|
|
8.
Batty M.
Fractal Cities,1994:78-84
|
CSCD被引
1
次
|
|
|
|
9.
Benguigui L. Is the suburban railway system a fractal.
Geographical Analysis,1991,23:362-368
|
CSCD被引
40
次
|
|
|
|
10.
Nicholas J Tate.
Modelling Scale in Geographical Information Science,2001:69-86
|
CSCD被引
1
次
|
|
|