Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process
查看参考文献37篇
文摘
|
Liquid metal cooling (LMC) process as a powerful directional solidification (DS) technique is prospectively used to manufacture single crystal (SC) turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. |
来源
|
Progress in Natural Science: Materials International
,2018,28(1):78-84 【核心库】
|
DOI
|
10.1016/j.pnsc.2018.01.003
|
关键词
|
Hollow blade
;
Single crystal
;
Multi-scale simulation
;
Liquid metal cooling
|
地址
|
1.
School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, MoE, Beijing, 100084
2.
School of Mechanical Engineering, Xi'an Jiao Tong University, State Key Laboratory of Manufacturing System Engineering, Xi'an, 710049
3.
SUVAST Special Alloy Technology Co., LTD, Wuxi, 214000
4.
Shenyang Aero Engine Precision Casting Co., LTD, Shenyang, 110043
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1002-0071 |
学科
|
金属学与金属工艺 |
基金
|
the National Key R&D Plan Program
;
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:6218829
|
参考文献 共
37
共2页
|
1.
Kear B H.
Science,1980,208:847-856
|
CSCD被引
14
次
|
|
|
|
2.
Zhang H.
Sci. China Technol. Sci,2011,54:3191-3202
|
CSCD被引
4
次
|
|
|
|
3.
Mishra R K.
J. Fail. Anal. Proven,2015,15:25-32
|
CSCD被引
1
次
|
|
|
|
4.
Nabarro F R N.
Mater. Sci. Eng. A,1994,184:167-171
|
CSCD被引
4
次
|
|
|
|
5.
Feng Q.
Acta Mater,2003,51:269-284
|
CSCD被引
30
次
|
|
|
|
6.
Sun H F. Microstructure heterogeneity and creep damage of DZ125 nickel-based superalloy.
Prog. Nat. Sci. Mater. Int,2014,24:266-273
|
CSCD被引
3
次
|
|
|
|
7.
Li Z L.
J. Mater. Proc. Technol,2015,217:1-12
|
CSCD被引
9
次
|
|
|
|
8.
Hao H Q. Microstructure and grain orientation evolution of a specially shaped shroud during directional solidification process.
Prog. Nat. Sci. Mater. Int,2013,23:211-215
|
CSCD被引
1
次
|
|
|
|
9.
Yu J.
J. Mater. Sci. Technol,2007,23:47-54
|
CSCD被引
8
次
|
|
|
|
10.
Yang C B.
Prog. Nat. Sci. Mater. Int,2012,22:407-413
|
CSCD被引
2
次
|
|
|
|
11.
Pan D.
J. Mineral Metal. Mater. Soc,2010,62:30-34
|
CSCD被引
1
次
|
|
|
|
12.
Zhou Y Z.
Scr. Mater,2011,65:281-284
|
CSCD被引
27
次
|
|
|
|
13.
Lian Y Y.
J. Alloy. Compd,2016,687:674-682
|
CSCD被引
1
次
|
|
|
|
14.
Bridgman P W.
US Pat, 886520,1926
|
CSCD被引
1
次
|
|
|
|
15.
Ma D X.
Metall. Mater. Trans. B,2012,43:344-353
|
CSCD被引
16
次
|
|
|
|
16.
Liang Z J.
Acta Metallurgica Sinica (in Chinese),2004,40:439-444
|
CSCD被引
1
次
|
|
|
|
17.
Rappaz M.
Curr. Opin. Solid State Mater. Sci,2016,20:37-45
|
CSCD被引
6
次
|
|
|
|
18.
Franke M M.
J. Mater. Proc. Technol,2013,213:2081-2088
|
CSCD被引
10
次
|
|
|
|
19.
Brundidge C L.
Metall. Mater. Trans. A,2011,42:2723-2732
|
CSCD被引
17
次
|
|
|
|
20.
Nakagawa Y G.
Heat treatment, microstructure, and creep strength of γ/γ′- a eutectic directionally solidified by fluidized bed quenching,1980:267-274
|
CSCD被引
1
次
|
|
|
|
|