On Consistency in AHP and Fuzzy AHP
查看参考文献62篇
文摘
|
The analytic hierarchy process (AHP) is used widely for analyzing decisions made in various real-world applications. Its basic idea is to construct a hierarchy of concepts encountered in a given decision problem and to choose the best alternative according to pairwise comparison matrices given by the decision maker. Under the assumption of fully rational economics, a reasonable decision should be consistent. It becomes an important issue on how to analyze and ensure the consistency of comparison matrices together with the judgments of the decision maker. The main objectives of the present paper are threefold. First,we review the basic idea and methods used to define the consistency and the transitivity of multiplicative reciprocal matrices, additive reciprocal matrices and comparison matrices with fuzzy interval and triangular fuzzy numbers. The existing controversy behind the applications of fuzzy set theory to the AHP in the literature is presented. Second,the consistency of the collective comparison matrices in group decision making based on AHP and fuzzy AHP is further analyzed. We point out that the weak consistency of preference relations with fuzzy numbers in fuzzy AHP and group decision making should be investigated comprehensively. Third,under the consideration of the vagueness in the process of evaluating the judgements, a new concept of fuzzy consistency of comparison matrices in the AHP is given. |
来源
|
Journal of Systems Science and Information
,2017,5(2):128-147 【核心库】
|
DOI
|
10.21078/JSSI-2017-128-20
|
关键词
|
decision analysis
;
AHP
;
fuzzy set theory
;
fuzzy consistency
;
group decision-making
|
地址
|
1.
School of Mathematics and Information Science, Guangxi University, Nanning, 530004
2.
School of Mathematics and Information Science,Guangxi University, Nanning, 530004
3.
School of Business Administration, South China University of Technology, Guangzhou, 510641
4.
Department of Electrical and Computer Engineering,University of Alberta, Canada, Edmonton, T6R 2V4
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1478-9906 |
基金
|
国家自然科学基金
;
中国博士后科学基金
;
2014 Shaanxi Postdoctoral Science Foundation Funded Project, Guangxi Natural Science Foundation
;
Guangxi Natural Science Foundation for Distinguished Young Scholars
;
Science Foundation of Guangxi University for Young Ph.D
|
文献收藏号
|
CSCD:6180004
|
参考文献 共
62
共4页
|
1.
Saaty T L. A scaling method for priorities in hierarchical structures.
Journal of Mathematical Psychology,1977,15(3):234-281
|
CSCD被引
234
次
|
|
|
|
2.
Saaty T L.
The analytic hierarchy process,1980
|
CSCD被引
606
次
|
|
|
|
3.
Xu Z S. A consistency improving method in the analytic hierarchy process.
European Journal of Operational Research,1999,116(2):443-449
|
CSCD被引
82
次
|
|
|
|
4.
Bellman R E. Decision-making in a fuzzy environment.
Management Science,1970,17(4):B-141-B-164
|
CSCD被引
146
次
|
|
|
|
5.
Zadeh L A. Fuzzy sets.
Information Control,1965,8(3):338-353
|
CSCD被引
2758
次
|
|
|
|
6.
Pedrycz W. Why triangular membership functions?.
Fuzzy Sets and Systems,1994,64(1):21-30
|
CSCD被引
8
次
|
|
|
|
7.
Van Laarhoven P J M. A fuzzy extension of Saaty's priority theory.
Fuzzy Sets and Systems,1983,11(1/3):229-241
|
CSCD被引
124
次
|
|
|
|
8.
Saaty T L. Uncertainty and rank order in the analytic hierarchy process.
European Journal of Operational Research,1987,32(1):107-117
|
CSCD被引
53
次
|
|
|
|
9.
Buckley J J. Fuzzy hierarchical analysis.
Fuzzy Sets and Systems,1985,17(3):233-247
|
CSCD被引
41
次
|
|
|
|
10.
Saaty T L. Axiomatic foundation of the analytic hierarchy process.
Management Science,1986,32(7):841-855
|
CSCD被引
55
次
|
|
|
|
11.
Black D. On the rationale of group decision-making.
Journal of Political Economy,1948,56(1):23-34
|
CSCD被引
8
次
|
|
|
|
12.
Crawford G. The geometric mean procedure for estimating the scale of a judgment matrix.
Mathematical Modelling,1989,9(3/5):327-334
|
CSCD被引
1
次
|
|
|
|
13.
Pelaez J I. A new measure of consistency for positive reciprocal matrices.
Computers & Mathematics with Applications,2003,46(12):1839-1845
|
CSCD被引
5
次
|
|
|
|
14.
Stein W E. The harmonic consistency index for the analytic hierarchy process.
European Journal of Operational Research,2007,177(1):488-497
|
CSCD被引
2
次
|
|
|
|
15.
Brunelli M. Inconsistency indices for pairwise comparison matrices: A numerical study.
Annals of Operations Research,2013,211(1):493-509
|
CSCD被引
1
次
|
|
|
|
16.
Brunelli M. Axiomatic properties of inconsistency indices for pairwise comparisons.
Journal of the Operational Research Society,2015,66(1):1-15
|
CSCD被引
2
次
|
|
|
|
17.
Brunelli M. Studying a set of properties of inconsistency indices for pairwise comparisons.
Annals of Operations Research,2017,248(1):143-161
|
CSCD被引
1
次
|
|
|
|
18.
Basile L. Weak consistency and quasi-linear means imply the actual ranking.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2002,10(3):227-239
|
CSCD被引
1
次
|
|
|
|
19.
Basile L. Transitive matrices, strict preference order and ordinal evaluation operators.
Soft Computing,2006,10(8):933-940
|
CSCD被引
1
次
|
|
|
|
20.
Zimmermann H J.
Fuzzy sets, decision making, and expert system,1987
|
CSCD被引
2
次
|
|
|
|
|