帮助 关于我们

返回检索结果

黑土耕作区土壤含水量空间自相关及农业生产分区
Spatial Autocorrelation of Soil Moisture and Agricultural Zoning in a Mollisol Tillage Area of Northeast China

查看参考文献29篇

高凤杰 1   单培明 1   马泉来 2   韩文文 1   周军 3 *   鞠铁男 1   吴啸 1  
文摘 论文以东北黑土耕作区土壤表层(0~20 cm)含水量为研究对象,基于3S技术和Moran指数进行空间自相关分析,掌握黑土区土壤表层含水量的空间自相关类型及其分布格局,划定农业生产中的优先区域,为农业生产中土壤含水量的分区管理、农业设施合理配置提供理论依据。结果表明:海沟河小流域土壤含水量空间差异大,变异程度为中等变异,受人类活动等随机因素的影响较大;全局空间自相关系数为0.417 7,表现出较强的正自相关特征,且不同方向存在较大差异;局部空间自相关系数为0.374 4,局部空间自相关类型主要为H-H型(高-高关联)和L-L型(低-低关联),空间集聚特征明显, H-H型主要分布于研究区西北部地势平坦的地区,形成高含水量且高度空间自相关的格局,耕作优势突出,为农业生产中的优先区域,L-L型分布于东部山地与平原的过渡带,形成低含水量集聚的格局,为农业生产中的一般区域。基于土壤含水量空间自相关分布特征,进行农业生产区域的划定及分区管理具有重要的实践价值。
其他语种文摘 The paper mainly analyzed the spatial distribution pattern and spatial autocorrelation of surface soil moisture (0-20 cm) in a mollisol tillage area of Northeast China with the Moran index model of global and local spatial autocorrelation indicators. The paper discovered the spatial structure and distribution pattern of surface soil moisture and provided a basis for agricultural zoning and facility allocation. The results show that there is great spatial difference of surface soil moisture with moderate variation in the study area. The spatial variation is mostly caused by random factors such as human activities, tillage practice and so on. The global spatial autocorrelation coefficient is 0.417 7,showing strong positive autocorrelation, and there exists anisotropy of spatial autocorrelation. The local spatial autocorrelation coefficient is 0.374 4,mainly displaying H-H (high- high correlation) and L-L (low-low correlation) clusters, which shows the coexistence pattern of high value agglomeration and low value agglomeration. The H- H agglomerations mainly distribute in the flat area in the northwest of the study area. The H-H area has very good tillage condition and has priority in developing agriculture. When farming in this area, people can take full advantage of the nature to achieve high yield with low cost. The L-L agglomerations mainly distribute in the transition zone of mountain and plain in the east part of the study area where the surface soil moisture content is low. When farming in this area, people should invest more on agricultural irrigation infrastructure. In a word, this research could serve in allocation of regional water resources and agricultural facilities.
来源 自然资源学报 ,2017,32(11):1930-1941 【核心库】
DOI 10.11849/zrzyxb.20161062
关键词 黑土耕作区 ; 土壤含水量 ; 空间自相关 ; 分区管理
地址

1. 东北农业大学资源与环境学院, 哈尔滨, 150030  

2. 武汉市江岸区新村街道办事处, 武汉, 430012  

3. 黑龙江省环境科学研究院, 哈尔滨, 150036

语种 中文
文献类型 研究性论文
ISSN 1000-3037
学科 农业基础科学
基金 国家重点研发计划课题子课题 ;  国家自然科学基金项目 ;  东北农业大学青年才俊项目
文献收藏号 CSCD:6110247

参考文献 共 29 共2页

1.  Tobler W R. A computer movie simulating urban growth in the Detroit region. Economic Geography,1970,46(2):234-240 被引 602    
2.  Tobler W R. On the First Law of Geography: A reply. Annals of the Association of American Geographers,2004,94(2):304-310 被引 57    
3.  Miller H J. Tober's first law and spatial analysis. Annals of the Association of American Geographers,2004,94(2):284-289 被引 56    
4.  Barnes T J. A paper related to everything but more related to local things. Annals of Association of American Geographers,2004,94(2):278-283 被引 4    
5.  李小文. 地理学第一定律与时空邻近度的提出. 自然杂志,2007,29(2):69-71 被引 55    
6.  孙俊. 地理学第一定律之争及其对地理学理论建设的启示. 地理研究,2012,31(10):1749-1763 被引 26    
7.  Anselin L. What is special about spatial data alternative perspectives on spatial data analysis. Technical Report 89-4,1989:89-93 被引 1    
8.  Kim D. Spatial autocorrelation potentially indicates the degree of changes in the predictive power of environment factors for plant diversity. Ecological Indicators,2016,60:1130-1141 被引 3    
9.  张秀英. 基于GIS的黄土高原小流域土壤水分时空分布模拟 --以定西安家沟为例. 自然资源学报,2005,20(1):132-139 被引 17    
10.  熊昌盛. 基于局部空间自相关的高标准基本农田建设分区. 农业工程学报,2015,31(22):276-284 被引 54    
11.  李宝庆. 土壤水研究的进程和展望. 地理研究,1989,8(3):102-108 被引 5    
12.  雷志栋. 土壤水研究进展与评述. 水科学进展,1999,10(3):311-318 被引 132    
13.  段良霞. 黄土高原沟壑区坡地土壤水分状态空间模拟. 水科学进展,2015,26(5):649-660 被引 15    
14.  Younis S M Z. Estimation of soil moisture using multispectral and FTIR techniques. The Egyptian Journal of Remote Sensing and Space Sciences,2015,18:151-161 被引 6    
15.  Ranatunga K. Review of soil water models and their applications in Australia. Environmental Modeling and Software,2008,23:1182-1206 被引 4    
16.  Kim S. Time series modeling of soil moisture dynamics on a steep mountainous hillside. Journal of Hydrology,2016,536:37-49 被引 4    
17.  肖德安. 土壤水研究进展与方向评述. 生态环境学报,2009,18(3):1182-1188 被引 28    
18.  Ji X Y. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow. Advances in Water Resources,2015,86:155-169 被引 1    
19.  高凤杰. 黑土丘陵区小流域土壤有机质空间变异及分布格局. 环境科学,2016,37(5):1915-1922 被引 21    
20.  Zhang S L. Spatial heterogeneity of soil C:N ratio in a mollisol watershed of Northeast China. Land Degradation and Development,2016,27:295-304 被引 3    
引证文献 8

1 刘尊雷 基于遥感影像的江西省水体资源和水产养殖结构空间异质性分析 自然资源学报,2018,33(10):1833-1846
被引 6

2 韩博 基于“要素-景观-系统”框架的江苏省长江沿线生态修复格局分析与对策 自然资源学报,2020,35(1):141-161
被引 21

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号