穿梭体影响微生物群落胞外电子传递过程的研究
Effects of Shuttles on Extracellular Electron Transfer of Microbial Community
查看参考文献33篇
文摘
|
微生物是土壤、湖泊、沉积物中重要的活性物种。胞外呼吸是微生物主要的能量代谢方式,是微生物与胞外受体间进行电子传递的主要路径。胞外电子传递过程是胞外呼吸作用的重要组成部分,影响着环境中的物质转变和能量交换。研究发现胞外电子传递方式主要包括直接电子传递和间接电子传递两大类。其中,直接电子传递方式主要分为直接接触、纳米导线和纳米导线网络;间接电子传递以穿梭体介导的电子传递为主。腐殖质是自然界中重要的氧化还原活性物种,能作为穿梭体参与间接电子传递过程。已有的研究表明穿梭体能影响单菌体系微生物胞外电子传递过程,但其影响微生物群落胞外电子传递过程的研究更具实际意义。本实验以浅海沉积物为研究对象,构建微生物燃料电池(Microbial Fuel Cell,MFC),结合电化学方法研究在核黄素、AQDS、2-HNQ 3种穿梭体介导下,微生物群落燃料电池的输出电压、极化曲线、功率密度等电化学参数的变化情况,以此来表征穿梭体对微生物群落胞外电子传递过程的影响。研究结果表明:(1)浅海沉积物中存在能进行胞外呼吸的微生物且能成功启动微生物燃料电池;(2)穿梭体的表观电极电位越低,其介导的微生物燃料电池的输出电压越高,此研究结果与纯菌体系相同;(3)纯菌体系中穿梭体的表观电极电位是胞外电子传递速率的决定因素,但在群落体系中并不成立。 |
其他语种文摘
|
Microorganisms are the most important active species in soil, lakes and sediments. The main form of microbial energy metabolism was extracellular respiration, which was an important electron transfer pathway between microbe and extracellular electron acceptors. Extracellular electron transfer (EET), the essential part of extracellular respiration, can affect the conversion of matter and exchange of energy. In general, several extracellular electron transfer mechanisms have been proposed: direct electron transfers and indirect electron transfers. Direct electron transfer pathways contain direct contact, nanowires and nanowire networks. While, indirect electron transfer pathways mainly related with electron shuttles (ESs). Humus, an important redox active species in nature, can act as ESs participating in indirect electron transfer pathways. It was reported that ESs had an impact on EET in the single bacteria system. While, ESs-mediated EET of microbial community has more practical significance. In this study, microbial fuel cells (MFCs) were constructed by inoculating shallow-sea sediments for revealing the way of ESs affecting on the EET of microbial community. Electrochemical method was used to study the output voltage, polarization curve, power density of MFCs with different electron shuttles, riboflavin, AQDS and 2-HNQ. The results are as follows, (1) there are many extracellular respiration microorganism existing in shallow-sea sediments with the ability to activate the MFCs. (2) The apparent potentials of ESs have negative correlation with the output voltages of the MFCs inoculating shallow-sea sediments, which was the same with the single bacteria system. (3) Differing from the single bacteria system, the apparent potentials of ESs may not be the key factor for the rate of EET in the MFCs inoculating shallow-sea sediments anymore. |
来源
|
生态环境学报
,2017,26(8):1419-1425 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2017.08.018
|
关键词
|
胞外呼吸
;
电子穿梭体
;
微生物燃料电池
;
表观电极电位
;
浅海沉积物
|
地址
|
1.
中国科学院广州地球化学研究所, 广东, 广州, 510640
2.
广东省生态环境技术研究所, 广东, 广州, 510650
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金-广东联合基金
;
广东省科技计划项目
|
文献收藏号
|
CSCD:6104187
|
参考文献 共
33
共2页
|
1.
Bond D R. Electrode-reducing microorganisms that harvest energy from marine sediments.
Science,2002,295(5554):483-485
|
CSCD被引
130
次
|
|
|
|
2.
Bond D R. Electricity production by Geobacter sulfurreducens attached to electrodes.
Applied and Environmental Microbiology,2003,69(3):1548-1555
|
CSCD被引
136
次
|
|
|
|
3.
Chaudhuri S K. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
Nature Biotechnology,2003,21(10):1229-1232
|
CSCD被引
125
次
|
|
|
|
4.
Covington E D. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis.
Molecular Microbiology,2010,78(2):519-532
|
CSCD被引
6
次
|
|
|
|
5.
Firer-Sherwood M. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window.
Journal of Biological Chemistry,2008,13(6):849-854
|
CSCD被引
9
次
|
|
|
|
6.
Gralnick J A. Extracellular respiration.
Molecular Microbiology,2007,65(1):1-11
|
CSCD被引
30
次
|
|
|
|
7.
Holmes D E. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes.
Applied and Environmental Microbiology,2004,70(2):1234-1237
|
CSCD被引
36
次
|
|
|
|
8.
Holmes D E. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell.
Applied and Environmental Microbiology,2004,70(10):6023-6030
|
CSCD被引
29
次
|
|
|
|
9.
Kim B H. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens.
Journal of Microbiology and Biotechnology,1999,9(2):127-131
|
CSCD被引
30
次
|
|
|
|
10.
Kim G T.
An investigation into the bacterial community structure of an electricity-generating microbial fuel cell,2004
|
CSCD被引
1
次
|
|
|
|
11.
Kim H J. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense.
Enzyme and Microbial Technology,2002,30(2):145-152
|
CSCD被引
77
次
|
|
|
|
12.
Logan B E. Microbial fuel cells: methodology and technology.
Environmental Science & Technology,2006,40(17):5181-5192
|
CSCD被引
438
次
|
|
|
|
13.
Logan B E. Simultaneous wastewater treatment and biological electricity generation.
Water Science and Technology,2005,52(1/2):31-37
|
CSCD被引
46
次
|
|
|
|
14.
Lovley D R. Bug juice: harvesting electricity with microorganisms.
Nature Reviews Microbiology,2006,4(7):497-508
|
CSCD被引
67
次
|
|
|
|
15.
Lovley D R. Extracellular electron transfer: wires, capacitors, iron lungs, and more.
Geobiology,2008,6(3):225-231
|
CSCD被引
17
次
|
|
|
|
16.
Marsili E. Shewanella Secretes flavins that mediate extracellular electron transfer.
Proceedings of the National Academy of Sciences,2008,105(10):3968-3973
|
CSCD被引
82
次
|
|
|
|
17.
Methe B A. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.
Science,2003,302(5652):1967-1969
|
CSCD被引
22
次
|
|
|
|
18.
Myers C R. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.
Science,1988,240(4857):1319-1321
|
CSCD被引
56
次
|
|
|
|
19.
Newman D K. A role for excreted quinones in extracellular electron transfer.
Nature,2000,405(6782):94-97
|
CSCD被引
58
次
|
|
|
|
20.
Paquete C M. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space.
Frontiers in microbiology,2014,5:318-318
|
CSCD被引
4
次
|
|
|
|
|