帮助 关于我们

返回检索结果

穿梭体影响微生物群落胞外电子传递过程的研究
Effects of Shuttles on Extracellular Electron Transfer of Microbial Community

查看参考文献33篇

陈丹丹 1   罗小波 2   李芳柏 2  
文摘 微生物是土壤、湖泊、沉积物中重要的活性物种。胞外呼吸是微生物主要的能量代谢方式,是微生物与胞外受体间进行电子传递的主要路径。胞外电子传递过程是胞外呼吸作用的重要组成部分,影响着环境中的物质转变和能量交换。研究发现胞外电子传递方式主要包括直接电子传递和间接电子传递两大类。其中,直接电子传递方式主要分为直接接触、纳米导线和纳米导线网络;间接电子传递以穿梭体介导的电子传递为主。腐殖质是自然界中重要的氧化还原活性物种,能作为穿梭体参与间接电子传递过程。已有的研究表明穿梭体能影响单菌体系微生物胞外电子传递过程,但其影响微生物群落胞外电子传递过程的研究更具实际意义。本实验以浅海沉积物为研究对象,构建微生物燃料电池(Microbial Fuel Cell,MFC),结合电化学方法研究在核黄素、AQDS、2-HNQ 3种穿梭体介导下,微生物群落燃料电池的输出电压、极化曲线、功率密度等电化学参数的变化情况,以此来表征穿梭体对微生物群落胞外电子传递过程的影响。研究结果表明:(1)浅海沉积物中存在能进行胞外呼吸的微生物且能成功启动微生物燃料电池;(2)穿梭体的表观电极电位越低,其介导的微生物燃料电池的输出电压越高,此研究结果与纯菌体系相同;(3)纯菌体系中穿梭体的表观电极电位是胞外电子传递速率的决定因素,但在群落体系中并不成立。
其他语种文摘 Microorganisms are the most important active species in soil, lakes and sediments. The main form of microbial energy metabolism was extracellular respiration, which was an important electron transfer pathway between microbe and extracellular electron acceptors. Extracellular electron transfer (EET), the essential part of extracellular respiration, can affect the conversion of matter and exchange of energy. In general, several extracellular electron transfer mechanisms have been proposed: direct electron transfers and indirect electron transfers. Direct electron transfer pathways contain direct contact, nanowires and nanowire networks. While, indirect electron transfer pathways mainly related with electron shuttles (ESs). Humus, an important redox active species in nature, can act as ESs participating in indirect electron transfer pathways. It was reported that ESs had an impact on EET in the single bacteria system. While, ESs-mediated EET of microbial community has more practical significance. In this study, microbial fuel cells (MFCs) were constructed by inoculating shallow-sea sediments for revealing the way of ESs affecting on the EET of microbial community. Electrochemical method was used to study the output voltage, polarization curve, power density of MFCs with different electron shuttles, riboflavin, AQDS and 2-HNQ. The results are as follows, (1) there are many extracellular respiration microorganism existing in shallow-sea sediments with the ability to activate the MFCs. (2) The apparent potentials of ESs have negative correlation with the output voltages of the MFCs inoculating shallow-sea sediments, which was the same with the single bacteria system. (3) Differing from the single bacteria system, the apparent potentials of ESs may not be the key factor for the rate of EET in the MFCs inoculating shallow-sea sediments anymore.
来源 生态环境学报 ,2017,26(8):1419-1425 【核心库】
DOI 10.16258/j.cnki.1674-5906.2017.08.018
关键词 胞外呼吸 ; 电子穿梭体 ; 微生物燃料电池 ; 表观电极电位 ; 浅海沉积物
地址

1. 中国科学院广州地球化学研究所, 广东, 广州, 510640  

2. 广东省生态环境技术研究所, 广东, 广州, 510650

语种 中文
文献类型 研究性论文
ISSN 1674-5906
学科 环境科学基础理论
基金 国家自然科学基金-广东联合基金 ;  广东省科技计划项目
文献收藏号 CSCD:6104187

参考文献 共 33 共2页

1.  Bond D R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science,2002,295(5554):483-485 CSCD被引 130    
2.  Bond D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology,2003,69(3):1548-1555 CSCD被引 136    
3.  Chaudhuri S K. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology,2003,21(10):1229-1232 CSCD被引 125    
4.  Covington E D. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Molecular Microbiology,2010,78(2):519-532 CSCD被引 6    
5.  Firer-Sherwood M. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. Journal of Biological Chemistry,2008,13(6):849-854 CSCD被引 9    
6.  Gralnick J A. Extracellular respiration. Molecular Microbiology,2007,65(1):1-11 CSCD被引 30    
7.  Holmes D E. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Applied and Environmental Microbiology,2004,70(2):1234-1237 CSCD被引 36    
8.  Holmes D E. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology,2004,70(10):6023-6030 CSCD被引 29    
9.  Kim B H. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology,1999,9(2):127-131 CSCD被引 30    
10.  Kim G T. An investigation into the bacterial community structure of an electricity-generating microbial fuel cell,2004 CSCD被引 1    
11.  Kim H J. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme and Microbial Technology,2002,30(2):145-152 CSCD被引 77    
12.  Logan B E. Microbial fuel cells: methodology and technology. Environmental Science & Technology,2006,40(17):5181-5192 CSCD被引 438    
13.  Logan B E. Simultaneous wastewater treatment and biological electricity generation. Water Science and Technology,2005,52(1/2):31-37 CSCD被引 46    
14.  Lovley D R. Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology,2006,4(7):497-508 CSCD被引 67    
15.  Lovley D R. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology,2008,6(3):225-231 CSCD被引 17    
16.  Marsili E. Shewanella Secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences,2008,105(10):3968-3973 CSCD被引 82    
17.  Methe B A. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science,2003,302(5652):1967-1969 CSCD被引 22    
18.  Myers C R. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science,1988,240(4857):1319-1321 CSCD被引 56    
19.  Newman D K. A role for excreted quinones in extracellular electron transfer. Nature,2000,405(6782):94-97 CSCD被引 58    
20.  Paquete C M. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Frontiers in microbiology,2014,5:318-318 CSCD被引 4    
引证文献 3

1 隗陈征 生物海绵铁复合填料曝气生物滤器处理养殖海水脱氮条件优化研究 渔业科学进展,2021,42(1):29-37
CSCD被引 0 次

2 冯乙晴 酸性矿山废水微生物组时空演变特征及微生物-矿物互作机制 生态环境学报,2022,31(5):1032-1046
CSCD被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号