基于遥感与随机森林算法的陕西省土壤有机质空间预测
Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province
查看参考文献33篇
文摘
|
遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg~(-1),黄土高原南部处于中等水平,大部分在16~25 g·kg~(-1)之间,关中平原和汉中低山丘陵区含量偏低,大部分在13~25 g·kg~(-1),而黄土高原北部和风沙滩区含量大部分低于10 g·kg~(-1)。基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大。基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3 g·kg~(-1),预测值与实测值的相关系数在0.7以上。高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降。 |
其他语种文摘
|
There exists deviation of predication of soil organic matter (SOM) with observed data in special local topography units. The accuracy of SOM predication can be improved by combining observed data and remote sensing (RS) data, especially for SOM predication in large scale. In this study, AWIFS (Advanced Wide Field Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer) data, whose spatial resolution are 56 and 250 meters respectively, were combined with observed sample data to predict the spatial distribution of SOM in Shaanxi Province with RF (Random Forest) model. The spatial distribution of SOM in six types of topographical units were summarized, and the prediction accuracies of SOM based on RF model and OK (Ordinary Kriging) model were compared. The results indicated that the spatial differentiation of SOM is obvious in north-south direction in Shaanxi Province. It is the highest in Qinling and Daba mountain areas with SOM content higher than 25 g·kg~(-1), and it is medium high in the south of Loess Plateau area with the SOM content 22- 30 g ·kg- 1. The content of SOM is lower in Guanzhong Plain and Hanzhong basin areas with SOM content among 13-25 g·kg- 1, while it is the lowest in north Loess Plateau and the blown-sand areas with SOM content less than 10 g ·kg- 1. The prediction results based on AWIFS data (with higher spatial resolution) were better than those based on MODIS (with lower spatial resolution) data. The acquired data of images has little influence on SOM prediction. It is shown that the predicted value of SOM is a bit lower in autumn than in spring. With different percentages of sampling, the SOM prediction based on RF model is always better than that based on Ordinary Kriging model. The prediction accuracy in this study is reliable, because the mean error in independent validation set is no more than 3 g · kg- 1,and the correlation coefficient of the predicted values and the observed values are higher than 0.7. Elevation is the most importance factor influencing SOM prediction in Shaanxi Province. When the spatial resolution of RS data decreases, the importance of geographic location of sampling points increase and the importance of vegetation decrease. |
来源
|
自然资源学报
,2017,32(6):1074-1086 【核心库】
|
DOI
|
10.11849/zrzyxb.20160623
|
关键词
|
多分辨率遥感数据
;
随机森林算法
;
土壤有机质预测
;
陕西省
|
地址
|
1.
西北农林科技大学资源环境学院, 农业部西北植物营养与农业环境重点实验室, 陕西, 杨凌, 712100
2.
西北农林科技大学资源环境学院, 陕西, 杨凌, 712100
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3037 |
学科
|
农业基础科学 |
基金
|
国家科技基础性工作专项
|
文献收藏号
|
CSCD:6009937
|
参考文献 共
33
共2页
|
1.
张法升. 基于多光谱遥感影像的表层土壤有机质空间格局反演.
应用生态学报,2010,21(4):883-888
|
CSCD被引
35
次
|
|
|
|
2.
方斌. 作物种植前后土壤有机质及养分因子的空间变异分析.
生态学报,2014,34(4):983-992
|
CSCD被引
13
次
|
|
|
|
3.
王茵茵. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究.
土壤学报,2016,53(2):342-354
|
CSCD被引
38
次
|
|
|
|
4.
Sreenivas K. Digital mapping of soil organic and inorganic carbon status in India.
Geoderma,2016,269:160-173
|
CSCD被引
10
次
|
|
|
|
5.
Condit H R. The spectral reflectance of American soils.
Photogrammetric Engineering,1970,36:955-966
|
CSCD被引
15
次
|
|
|
|
6.
Stoner E R. Characteristic variations in reflectance of surface soils.
Soil Science Society of American Journal,1982,45:1161-1165
|
CSCD被引
107
次
|
|
|
|
7.
Ben-Dor E. The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400-2 500 nm) during a control decomposition process.
Remote Sensing of Environment,1997,61:1-15
|
CSCD被引
27
次
|
|
|
|
8.
Ben-Dor E. Using imaging spectroscopy to study soil properties.
Remote Sensing of Environment,2009,113:S38-S55
|
CSCD被引
22
次
|
|
|
|
9.
Madani A A. Soil salinity detection and monitoring using Landsat data:A case study from Siwa Oasis, Egypt.
GIS Science and Remote Sensing,2005,42:171-181
|
CSCD被引
2
次
|
|
|
|
10.
Taylor G R. Hyperspectral imagery as a tool for the assessment of stubble content in a fallow soil.
Proceedings Workshop on Hyperspectral Remote Sensing and Field Spectroscopy of Agricultural Crops and Forest Vegetation,2006
|
CSCD被引
1
次
|
|
|
|
11.
Dematte J A M. Spectral reflectance for the mineralogical evaluation of Brazilian low clay activities soils.
Geoderma,2007,28:4537-4559
|
CSCD被引
1
次
|
|
|
|
12.
Ben-Dor E. Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor.
Geoderma,2006,131:1-21
|
CSCD被引
4
次
|
|
|
|
13.
Kemper T. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy.
Environment Science Technology,2002,36:2742-2747
|
CSCD被引
106
次
|
|
|
|
14.
Dematte J A M. Determining soil water status and other soil characteristics by spectral proximal sensing.
Geoderma,2006,135:179-195
|
CSCD被引
8
次
|
|
|
|
15.
Stevens A. Detection of carbon stock change in agricultural soils using spectroscopic techniques.
Soil Science Society of America Journal,2006,70:844-850
|
CSCD被引
9
次
|
|
|
|
16.
Wiesmeier M. Digital mapping of soil organic matter stocks using Random forest modeling in a semi-arid steppe ecosystem.
Plant Soil,2011,340:7-24
|
CSCD被引
23
次
|
|
|
|
17.
Di Nezio M S. Successive projections algorithm improving the multivariate simultaneous direct spectrophotometric determination of five phenolic compounds in sea water.
Microchemical Journal,2007,85(2):194-200
|
CSCD被引
8
次
|
|
|
|
18.
刘二永. 基于环境因子和R-STPS的林地土壤有机质预测模型.
农业机械学报,2015,46(1):133-137
|
CSCD被引
10
次
|
|
|
|
19.
Breiman L. Random forests.
Machine Learning,2001,45:5-32
|
CSCD被引
3439
次
|
|
|
|
20.
方匡南. 随机森林方法研究综述.
统计与信息论坛,2011,26(3):32-37
|
CSCD被引
300
次
|
|
|
|
|