20世纪80年代以来全球耕地变化的基本特征及空间格局
Spatiotemporal characteristics and patterns of the global cultivated land since the 1980s
查看参考文献30篇
文摘
|
本文基于全球1982-2011年土地利用/覆被的矢量数据,分析了20世纪80年代以来全球耕地变化的基本特征及空间格局。结果表明:① 20世纪80年代以来,全球耕地面积增加了528.768×10~4 km~2,增加速率为7.920×10~4 km~2/a,呈不显著增加趋势,全球耕地面积以20世纪80年代增速最快。20世纪80年代以来,北美洲、南美洲、大洋洲耕地面积呈显著增加趋势,分别增加了170.854×10~4 km~2、107.890×10~4 km~2、186.492×10~4 km~2,增加速率分别为7.236×10~4 km~2/a、 2.780×10~4 km~2/a、3.758×10~4 km~2/a;亚洲、欧洲、非洲耕地面积为减少趋势,分别减少了23.769×10~4 km~2、4.035×10~4 km~2、86.76×10~4 km~2,减少速率分别为-5.641×10~4 km~2/a、-0.813×10~4 km~2/a、 -0.595×10~4 km~2/a。② 20世纪80年代以来,全球增加的耕地主要由草地、林地转化,分别占53.536%、26.148%。新增耕地面积主要分布在非洲南部及中部、澳大利亚东部和北部、南美洲东南部、美国的中部及阿拉斯加、加拿大中部、俄罗斯西部及芬兰北部、蒙古北部等区域。非洲南部的博茨瓦纳为全球耕地增加比例最高区域,增加了80%~90%。③ 20世纪80年代以来,全球耕地换化为其他用地共计1071.946×10~4 km~2,全球减少的耕地主要转化为了草地、林地,分别占比为57.482%、36.000%;全球减少耕地主要分布在非洲中部的苏丹南部、美国中南部、俄罗斯南部及欧洲南部的保加利亚、罗马尼亚、塞尔维亚和匈牙利等国,减少最大的区域为非洲南部,减少了60%。④各大洲耕地均表现出向高纬扩张的趋势,全球多数国家表现出新增耕地扩张而原有耕地减少的特点。 |
其他语种文摘
|
Based on the global land use / cover data from 1982 to 2011(CG-LTDR), this paper analyzes the characteristics and spatial patterns of cultivated land change since the 1980s. The results are summarized as follows: (1)Since the 1980s, the world's arable land has increased by 528.768 ×10~4 km~2 with a rate of 7.920 ×10~4 km~2/a, although the trend is not statistically significant. The world's arable land grew fastest in the 1980s. Areas of cultivated land in North America, South America and Oceania increased by 170.854×10~4 km~2, 107.890×10~4 km~2 and 186.492×10~4 km~2, respectively since the 1980s, showing significant trends with rates of 7.236×10~4 km~2/a, 2.780×10~4 km~2/a and 3.758×10~4 km~2/a, respectively. Areas in Asia, Europe and Africa decreased by 23.769×10~4, 4.035×10~4, 86.76×10~4 km~2, with rates of -5.641×10~4 km~2/a, -0.813×10~4 km~2/a and -0.595×10~4 km~2/a, respectively. Only Asia revealed a significant reduction trend. (2)Since the 1980s, the increased cultivated land in the world has been mainly converted from grasslands and forests, accounting for 53.536% and 26.148%, respectively. Newly cultivated land was mostly distributed in southern and central Africa, eastern and northern Australia, southeastern South America, central US, Alaska, central Canada, western Russia, northern Finland and northern Mongolia. Among these regions, Botswana in southern Africa has the highest proportion of increased arable land, an increase of 80%-90%. (3)Since the 1980s, a total of 1071.946 ×10~4 km~2 of arable land has been converted to other types of land, mostly grasslands and forests that account for 57.482% and 36.000%, respectively. Global reduction of arable land was mainly found in southern and central Africa, central South America, southern Russia and southern Europe (Bulgaria, Romania, Serbia and Hungary). Among these regions, southern Africa experienced the highest reduction of 60%. (4)Cultivated lands in all continents had a trend of expanding to high latitudes, and most countries in the world are characterized by expansion of newly cultivated land and reduction of cultivated land in the earlier period. |
来源
|
地理学报
,2017,72(7):1235-1247 【核心库】
|
DOI
|
10.11821/dlxb201707009
|
关键词
|
耕地
;
变化特征
;
空间格局
;
全球
;
20世纪80年代
|
地址
|
1.
哈尔滨师范大学, 黑龙江省普通高等学校地理环境遥感监测重点实验室, 哈尔滨, 150025
2.
国家气象卫星中心, 中国气象局中国遥感卫星辐射测量和定标重点开放实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
社会科学总论;测绘学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6029163
|
参考文献 共
30
共2页
|
1.
Ramankutty N. Feedbacks between agriculture and climate:An illustration of the potential unintended consequences of human land use activities.
Global and Planetary Change,2006,54(1/2):79-93
|
CSCD被引
10
次
|
|
|
|
2.
Tian H Q. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States.
Ecosystems,2012,15(4):674-694
|
CSCD被引
18
次
|
|
|
|
3.
Tao B. Terrestrial carbon balance in tropical Asia:Contribution from cropland expansion and land management.
Global & Planetary Change,2013,100(1):85-98
|
CSCD被引
10
次
|
|
|
|
4.
何凡能. 北宋路域耕地面积重建及时空特征分析.
地理学报,2016,71(11):1967-1978
|
CSCD被引
10
次
|
|
|
|
5.
Chhabra A. Multiple impacts of land-use/cover change.
Land-Use and Land-Cover Change,2006:71-116
|
CSCD被引
2
次
|
|
|
|
6.
刘纪远. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局.
地理学报,2014,69(1):3-14
|
CSCD被引
547
次
|
|
|
|
7.
史培军. 当代地理学之人地相互作用研究的趋向--全球变化人类行为计划(IHDP)第六届开放会议透视.
地理学报,2006,61(2):115-126
|
CSCD被引
68
次
|
|
|
|
8.
Findell K L. Regional and global impacts of land cover change and sea surface temperature anomalies.
Journal of Climate,2009,22(12):3248-3269
|
CSCD被引
13
次
|
|
|
|
9.
Ramankutty N. Global changes in land cover.
IHDP Newsletter,2005(3):4-5
|
CSCD被引
2
次
|
|
|
|
10.
Godfray H C. Food security:The challenge of feeding 9 billion people.
Science,2010,327(5967):812-818
|
CSCD被引
335
次
|
|
|
|
11.
Goldewijk K K. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12, 000 years.
Global Ecology and Biogeography,2011,20(1):73-86
|
CSCD被引
92
次
|
|
|
|
12.
Ramankutty N. Feedbacks between agriculture and climate:An illustration of the potential unintended consequences of human land use activities.
Global & Planetary Change,2006,54(1):79-93
|
CSCD被引
10
次
|
|
|
|
13.
叶瑜. 东北地区过去300年耕地覆盖变化.
中国科学(D)辑:地球科学,2009,39(3):340-350
|
CSCD被引
60
次
|
|
|
|
14.
Ramankutty N. Characterizing patterns of global land use:An analysis of global croplands data.
Global Biogeochemical Cycles,1998,12(4):667-685
|
CSCD被引
28
次
|
|
|
|
15.
Ramankutty N. Estimating historical changes in global land cover:Croplands from 1700 to 1992.
Global Biogeochemical cycles,1999,13(4):997-1027
|
CSCD被引
157
次
|
|
|
|
16.
Ramankutty N. Farming the planet:1. Geographic distribution of global agricultural lands in the year 2000.
Global Biogeochemical Cycles,2008,22(1):567-568
|
CSCD被引
62
次
|
|
|
|
17.
Lepers E. A synthesis of information on rapid land-cover change for the period 1981-2000.
Bio Science,2005,55(2):115-124
|
CSCD被引
15
次
|
|
|
|
18.
赵文武. 世界主要国家耕地动态变化及其影响因素.
生态学报,2012,32(20):6452-6462
|
CSCD被引
18
次
|
|
|
|
19.
史学丽. CG-LTDR地表覆盖数据对BCC_AVIM 1.0陆面温度模拟的影响研究.
地球信息科学学报,2015,17(11):1294-1303
|
CSCD被引
4
次
|
|
|
|
20.
商荣. 基于背景知识的全球长时间序列反照率反演.
地球信息科学学报,2015,17(11):1313-1322
|
CSCD被引
4
次
|
|
|
|
|