西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环
Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling .in Southwest China
查看参考文献35篇
文摘
|
流域化学侵蚀及其速率与流域生态和环境之间的关系是当前地表地球化学研究的重要前沿领域,其中碳酸盐岩的硫酸风化机制及其与区域碳循环的关系则是科学家们最为关注的科学问题。因此,近年通过研究西南喀斯特流域地表水地球化学对这一科学问题进行了研究,发现西南喀斯特地区河水一般含有较多的SO_4~(2-),从化学计量学、SO4~(2-)的占δ~(34)S和溶解无机碳(DIC)的δ^13C分析发现,硫循环中形成的硫酸广泛参与了流域碳酸盐矿物的溶解和流域侵蚀:西南喀斯特流域碳酸盐岩的侵蚀速率为97t/(km~2·a),消耗COz量为25t/(km~2·a)。对乌江流域河水硫酸盐离子的硫同位素研究结果认为:参与流域侵蚀的硫酸主要来自煤系地层硫化物和矿床硫化物的氧化及大气酸沉降,分别对河水SO4~2-的贡献为50%、27%和20.5%(其余2.5%的SO_4~X~(2-)为硫酸盐蒸发岩的溶解);硫酸风化碳酸盐岩向大气净释放CO2的总通量为8.2t/(km~2·a),依此计算西南喀斯特区域向大气释放CO2的通量为4.4×10~(12)g/a,相当于每年西南碳酸盐岩风化消耗CO2总通量的33%。将乌江流域的研究结果对我国大陆碳酸盐岩分布区域进行相应计算发现,硫酸风化碳酸盐矿物向大气释放的C02总通量为28×10~(12)g/a,相当于全球硅酸盐风化消耗CO2量的26%。硫酸参与流域侵蚀改变了区域碳循环,人为过程可以通过释放酸沉降、矿业活动和土地利用等形式加速流域侵蚀和影响流域元素的生物地球化学循环。 |
其他语种文摘
|
The research on relationship between catchment erosion and eco-environmental change is one of frontier sciences in the earth's surface geochemistry. Crustal weathering by sulfuric acid and its relationship to carbon cycling has become one of the most interesting subjects for geochemists. In recent years, we studied water geochemistry of rivers draining karstic areas in Southwest China, and recognized that the studied river waters have high content of SO4^2-, and that sulfuric acid had significantly taken part in chemical weathering of carbonate rocks as evidenced by stoichiometrie analysis, δ~(13)C of dissolved inorganic carbon (DIC) and δ~(34)S of sulfate ion of the river waters. Weathering rate of carbonate rocks in Southwest China has estimated to be 97 t/(km_2 · a), and 25 t CO_2 consumption/(km_2· a). Sulfuric acid weathering carbonate rocks was originated mainly from acid rain, oxidation of sulfide minerals in coal containing strata and ore deposits. The flux of CO_2 release to atmosphere is 8.2 t/ (km_2 · a), and the calculated total flux of CO_2 release due to carbonate weathering by sulfuric acid in southwest China amounts to 4.4 ×10~(12) g/a, which is 33% of CO_2 consumption by weathering of carbonate rocks. If this rate is applied to whole land of China, carbonate weathering by sulfuric acid will release 28 ×10~(12) g CO_2/a, about 26% of global consumption of CO_2 by silicate weathering. weathering can change carbon cycling, and should have This work shows that sulfuric acid-involved catchment been taken into consideration in modeling global carbon cycling, and further indicate that human activities in many ways can accelerate chemical erosion of river basins and modify biogeochemical cycling of substance. |
来源
|
地球化学
,2008,37(4):404-414 【核心库】
|
关键词
|
喀斯特
;
流域侵蚀
;
硫酸风化
;
碳和硫同位素
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家973计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:3353997
|
参考文献 共
35
共2页
|
1.
Anderson S P. Chemical weathering in the foreland of a retreating glacier.
Geochim Cosmochim Acta,2000,64(7):1173-1189
|
CSCD被引
29
次
|
|
|
|
2.
Cerling T E. On the isotopic composition of carbon in soil carbon dioxide.
Geochim Cesmochim Acta,1991,55(11):3403-3405
|
CSCD被引
61
次
|
|
|
|
3.
Gaillardet J. Chemical denudation rates of the western Canadian orogenic belt:The Stikine terrane.
Chem Geol,2003,201(4):257-279
|
CSCD被引
11
次
|
|
|
|
4.
Galy A. Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget.
Chem Geol,1999,159:31-60
|
CSCD被引
82
次
|
|
|
|
5.
Han G L. Strontium isotope and major ion chemistry of the rainwaters from Guiyung Guizhou Province China.
Sci Total Environ,2006,364:165-174
|
CSCD被引
28
次
|
|
|
|
6.
Hu M H. Major ion chemistry of some large Chinese river.
Nature,1982,298(5874):550-553
|
CSCD被引
66
次
|
|
|
|
7.
Li S L. Sulfuric acid as an agent of carbonate weathering constrained byδ13CDICExamples from Southwest China.
Earth Planet Sol Lett,2008,270(4):189-199
|
CSCD被引
67
次
|
|
|
|
8.
Spence J. The role of sulfur in chemical weathering and atmospheric CO2 fluxes:Evidence from major ions δ13CDIC andδ34SSO4in rivers of the Canadian Cordillera.
Geochim Cosmochim Acta,2005,69(23):5441-5458
|
CSCD被引
53
次
|
|
|
|
9.
Stallard R F. Geochemistry of the Amazon:1 Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge.
J Geophys Bes,1981,86(10):9844-9858
|
CSCD被引
35
次
|
|
|
|
10.
Williams M W. Controls on the major ion chemistry of the Urümqi River Tian Shan People's Republic of China.
J Hydrol,1995,172:209-229
|
CSCD被引
11
次
|
|
|
|
11.
Xian H Y. Sources of nitrogen and sulfur in wet deposition at Guiyang southwest China.
Atmos Environ,2002,36(33):5121-5130
|
CSCD被引
1
次
|
|
|
|
12.
Xu Z F. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau Southwest China.
Chem Geol,2007,239(2):83-95
|
CSCD被引
39
次
|
|
|
|
13.
Zhang G P. Characterization of heavy metals and sulphur isotope in water and sediments of a mine-toiling area rich in carbonate.
Water Air Soil Pollut,2004,155:51-62
|
CSCD被引
5
次
|
|
|
|
14.
Zhang J. Dissolved trace metals in the Huanghe:The most turbid large river in the world.
Water Res,1993,27(1):1-8
|
CSCD被引
8
次
|
|
|
|
15.
储雪蕾. 北京地区地表水的硫同位素组成与环境地球化学.
第四纪研究,2000,20(1):87-97
|
CSCD被引
20
次
|
|
|
|
16.
韩至钧.
贵州省水文地质志,1996:508p
|
CSCD被引
1
次
|
|
|
|
17.
洪业汤. 中国大气降水的硫同位素组成特征.
自然科学进展,1994,4(6):741-745
|
CSCD被引
37
次
|
|
|
|
18.
洪业汤. 黄河硫同位素组成与青藏高原隆起.
第四纪研究,1995,15(4):360-366
|
CSCD被引
14
次
|
|
|
|
19.
蒋颖魁. 贵州乌江水系枯水期河水硫同位素组成研究.
地球化学,2006,35(6):623-628
|
CSCD被引
15
次
|
|
|
|
20.
李思亮. 碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用.
地球化学,2004,33(2):165-170
|
CSCD被引
47
次
|
|
|
|
|