时效处理对(FeNiCoCr)_(90)Al_5Ti_5高熵合金L12型析出相及力学性能的影响
Effect of aging treatment on L12 precipitated phase and mechanical properties of(FeNiCoCr)_(90)Al_5Ti_5 high entropy alloy
查看参考文献15篇
文摘
|
析出相形态和相稳定性对于调控合金力学性能至关重要。采用低速球磨+热压烧结法制备(FeNiCoCr)_(90)Al_5Ti_5高熵合金,研究高温(1150 ℃)和中温(850 ℃)时效处理对合金析出相类型、形貌、分布及力学性能的影响。结果表明:所制备合金压缩应变量达47%,屈服强度和极限抗压强度分别为948 MPa和1684 MPa,高强度源于晶内L12结构纳米析出相的强化作用。850 ℃时效10 h后L12析出相长大为尺寸超过10 μm的等轴晶粒,且部分转变为薄片状HCP结构η相,导致合金屈服强度和极限抗压强度降低。1150 ℃时效2 h后晶内纳米L12析出相完全回溶,导致合金屈服强度和极限抗压强度急剧降低。 |
其他语种文摘
|
The morphology and phase stability of precipitated phases are essential for regulating mechanical properties of alloys. The(FeNiCoCr)_(90)Al_5Ti_5 high entropy alloy was prepared by low-speed ball milling and hot-press sintering method, and the effects of high-temperature(1150 ℃)and medium-temperature(850 ℃)aging treatment on the types, morphology, distribution and mechanical properties of precipitated phases in the alloy were investigated. The results show that the compressive strain of the prepared alloy reaches 47%,and the yield strength and ultimate compressive strength are 948 MPa and 1684 MPa, respectively. The high strength is due to the strengthening effect of the L12 structure nano-precipitation phases within the crystal. After aging at 850 ℃ for 10 h, the L12 precipitated phases grow into equiaxed grains with a size exceeding 10 μm, and some of them transform into a thin lamellar HCP structure η phases, which leads to the decrease of the yield strength and ultimate compressive strength of the alloy. After aging at 1150 ℃ for 2 h, the intracrystalline L12 nano-precipitated phases completely redissolve, which leads to a drastic decrease in the yield strength and ultimate compressive strength of the alloy. |
来源
|
材料工程
,2024,52(4):146-154 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000493
|
关键词
|
高熵合金
;
析出相
;
时效处理
;
压缩性能
|
地址
|
1.
陕西理工大学材料科学与工程学院, 陕西, 汉中, 723000
2.
陕西理工大学, 矿渣综合利用环保技术国家地方联合工程实验室, 陕西, 汉中, 723000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
陕西省自然科学基础研究计划项目
|
文献收藏号
|
CSCD:7702988
|
参考文献 共
15
共1页
|
1.
王晓鹏. 高熵合金及其他高熵材料研究新进展.
航空材料学报,2019,39(6):1-19
|
CSCD被引
17
次
|
|
|
|
2.
高炜. Cr对FeCoNiAlCr_x高熵合金组织与力学性能的影响.
材料工程,2023,51(2):91-97
|
CSCD被引
6
次
|
|
|
|
3.
Wu Z. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures.
Acta Materialia,2014,81:428-441
|
CSCD被引
160
次
|
|
|
|
4.
刘恕骞. AlCoCrNiSi_x高熵合金微观组织结构与力学性能.
材料工程,2012(1):5-8
|
CSCD被引
15
次
|
|
|
|
5.
Jiang S. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
Nature,2017,544(7651):460-464
|
CSCD被引
167
次
|
|
|
|
6.
范昌胜. 有第二相粒子阻碍的晶粒粗化元胞自动机模拟.
西华大学学报(自然科学版),2013,32(3):23-26
|
CSCD被引
2
次
|
|
|
|
7.
Zhao Y L. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy.
Acta Materialia,2017,138:72-82
|
CSCD被引
73
次
|
|
|
|
8.
谢映光.
Fe-Co-Cr-Ni基间隙固溶强化型高熵合金的设计、强化机理及性能研究,2022
|
CSCD被引
1
次
|
|
|
|
9.
Diao H. Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility.
Materials Science and Engineering: A,2019,742:636-647
|
CSCD被引
6
次
|
|
|
|
10.
Chen D. Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys.
Intermetallics,2019,110:106476
|
CSCD被引
9
次
|
|
|
|
11.
Fang J Y C. Competition between continuous and discontinuous precipitation in L12-strengthened high-entropy alloys.
Intermetallics,2022,149:107655
|
CSCD被引
4
次
|
|
|
|
12.
Yang T. L12-strengthened highentropy alloys for advanced structural applications.
Journal of Materials Research,2018,33(19):2983-2997
|
CSCD被引
8
次
|
|
|
|
13.
Han B. Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy.
Scripta Materialia,2018,148:42-46
|
CSCD被引
7
次
|
|
|
|
14.
Seifollahi M. The mechanism of η phase precipitation in A286 superalloy during heat treatment.
Journal of Materials Engineering and Performance,2013,22(10):3063-3069
|
CSCD被引
11
次
|
|
|
|
15.
Li H. Precipitation of η-Ni_3(Ti,Al) phase at grain boundaries in an austenitic precipitation-strengthened stainless steel.
Metallurgical and Materials Transactions A,2019,50(2):915-923
|
CSCD被引
1
次
|
|
|
|
|