无人机倾斜影像自动检索及影像姿态恢复
Automatic Retrieval and Position Reconstruction of UAV Oblique Photogrammetry
查看参考文献22篇
文摘
|
无人机倾斜摄影测量颠覆了以往正射影像只能从垂直角度拍摄的局限,在三维建模中有广泛的前景。针对有些无人机倾斜影像数据无相机标定参数、无航带信息(无序)、无POS信息的现状,本文以计算机视觉中基于内容的影像检索方法与改进的渐进式SFM方法为基础,提出一种"三无"影像自动检索、空中三角测量及影像三维重建的方法。该方法首先通过提取的特征检索出相似影像并建立网络结构,然后将影像进行两两匹配增强对应关系并进行连接点的追踪,最后利用光束法平差方法对其进行平差,获取影像集的三维点云,提高大规模影像检索、影像匹配速度的同时,提高重建的精确性和鲁棒度。本文选取三组典型试验区大数据量倾斜影像数据进行试验,立体实测控制点中误差可以达到平面0.16m/高程0.18m,试验验证了方法的稳定性、可靠性和实用性。 |
其他语种文摘
|
In recent years,unmanned aerial vehicle (UAV) have become a means of civilization and universalization.The UAV image is gradually replacing aerospace remote sensing data and is widely used in many fields.The limitation that the orthophotos can only be taken from a vertical angle in the past has been broken nowadays by oblique photogrammetry which has wide application prospect in 3D modeling.Aiming to ensure three-no-image (i.e.,no camera calibration parameters,no strip information (disordered),and no POS (Position and orientation System) information) in some oblique images,the paper proposes a method of automatic aerial triangulation and 3D reconstruction for the three-no-image.This method is based on the content-based image retrieval method and improved progressive SFM (Structure from Motion) method in computer vision.Firstly,the method retrieves similar images and establishes the network through extracted features.Secondly,the correspondence between the two images is enhanced by matching the images and the tie points are tracked.Thirdly,the 3D point cloud of image is obtained by bundle adjustment.The algorithm improves the accuracy and robustness of reconstruction and makes a great progress in large scale image retrieval and image matching.Finally,,the stability,reliability,and accuracy of the proposed method was tested and validated with three-test experiments by using large scale real oblique images over three test areas.The test-1 area has 1190 images,from the project construction to the final aerial triangulation calculation without control,the total time is 4.3 hours,and the error is 0.4 pixels.The test-2 has 3685 images and no POS is used in experiment.From the project construction to the final aerial triangulation calculation without control,it takes 8 hours and the error is within 0.32 pixels.The two experimental results verified the stability and applicability of the proposed algorithm.The test-3 area has 1346 images,after 5 hours processing,the error of the free network adjustment is within 0.42 pixels,9 ground control points are used for check points,the error is within 0.16 m in plane and 0.18 m in elevation.The experimental results verified the accuracy and reliability of the proposed algorithm. |
来源
|
地球信息科学学报
,2019,21(4):600-607 【核心库】
|
DOI
|
10.12082/dqxxkx.2019.180415
|
关键词
|
无人机
;
倾斜影像
;
影像检索
;
SIFT算子
;
空中三角测量
;
渐进式姿态恢复
|
地址
|
中国测绘科学研究院, 北京, 100830
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家重点研发计划项目
;
国家基础测绘科技计划课题
;
中国测绘科学研究院基本科研业务项目
|
文献收藏号
|
CSCD:6477400
|
参考文献 共
22
共2页
|
1.
廖小罕. 无人机遥感众创时代.
地球信息科学学报,2016,18(11):1439-1447
|
CSCD被引
34
次
|
|
|
|
2.
孙钰珊. 倾斜影像匹配与三维建模关键技术发展综述.
遥感信息,2018,33(2):1-8
|
CSCD被引
8
次
|
|
|
|
3.
陈天博. 无人机遥感数据处理与滑坡信息提取.
地球信息科学学报,2017,19(5):692-701
|
CSCD被引
19
次
|
|
|
|
4.
王豪.
三维重建中的影像检索方法研究,2018
|
CSCD被引
2
次
|
|
|
|
5.
查冰.
基于非量测相机无结构影像的运动估计算法研究,2017
|
CSCD被引
3
次
|
|
|
|
6.
Snavely N. Photo tourism: Exploring photo collections in 3D.
International Conference on Computer Graphics and Interactive Techniques,2006,25(3):835-846
|
CSCD被引
1
次
|
|
|
|
7.
Agarwal S. Building Rome in a day.
Proceedings of the IEEE International Conference on Computer Vision,2009
|
CSCD被引
1
次
|
|
|
|
8.
Pollefeys M. Detailed real-time urban 3D reconstruction from video.
International Journal of Computer Vision,2008,78(2):143-167
|
CSCD被引
25
次
|
|
|
|
9.
Wu C. Towards linear-time incremental structure from motion.
Proceedings of the International Conference on 3dv-Conference,2013
|
CSCD被引
1
次
|
|
|
|
10.
Schnberger J L. Structure-from-Motion Revisited.
Proceedings of the Computer Vision and Pattern Recognition,2016
|
CSCD被引
1
次
|
|
|
|
11.
Moulon P. Adaptive structure from motion with a contrario model estimation.
Proceedings of the Asian Conference on Computer Vision,2012
|
CSCD被引
1
次
|
|
|
|
12.
Flickner M. Query by image and video content: The QBIC system.
IEEE Computer,2002,28(9):255-264
|
CSCD被引
1
次
|
|
|
|
13.
王海龙. 基于内容的图像检索探讨.
中原工学院学报,2005,16(2):12-15
|
CSCD被引
1
次
|
|
|
|
14.
王欣. 基于WWW的图像检索技术.
现代图书情报技术,2002,18(3):70-73
|
CSCD被引
2
次
|
|
|
|
15.
Smith J R. Visually searching the web for content.
IEEE Multimedia,2002,4(3):12-20
|
CSCD被引
1
次
|
|
|
|
16.
祝晓斌. 基于内容的图像检索技术研究.
计算机仿真,2015,32(5):1-4
|
CSCD被引
3
次
|
|
|
|
17.
Zhang N. Text and content based image retrieval via locality sensitive hashing.
Engineering Letters,2011,19(3):228-234
|
CSCD被引
1
次
|
|
|
|
18.
Rehman M. Content based image retrieval: Survey.
Telkomnika Indonesian Journal of Electrical Engineering,2013,11(11):995-998
|
CSCD被引
1
次
|
|
|
|
19.
姜亚莉. 基于内容的图像检索系统分析.
测绘与空间地理信息,2012,35(1):119-120
|
CSCD被引
1
次
|
|
|
|
20.
黄祥林. 基于内容的图像检索技术研究.
电子学报,2002,30(7):1065-1071
|
CSCD被引
25
次
|
|
|
|
|