帮助 关于我们

返回检索结果

火箭起飞段的激光主动融合轨迹测量技术
Laser Active Fusion Trajectory Measurement Technology in Rocket Take-off Phase

查看参考文献18篇

师恒 1,2,3,4   高昕 1 *   李希宇 1   雷呈强 1   胡蕾 1   宗永红 1   郑东昊 1   孙锐 1  
文摘 为实时测量火箭垂直起飞段轨迹数据,提出了一种基于激光雷达的融合轨迹测量技术,将两台激光雷达分别安装于二维精密转台构成融合测量系统,在火箭发射前,两台激光雷达同时扫描火箭中上部目标区域,采用激光点云数据修正、火箭目标区域轨迹初值解算和两台轨迹数据融合处理算法,计算并分析得到激光雷达静态与动态轨迹测量精度分别为0.023 5 m和0.036 6 m。在火箭垂直起飞过程中,二维精密转台实时接收火箭目标区域的轨迹数据,根据火箭位置信息引导激光雷达高精度跟踪扫描火箭起飞全过程,实现了火箭垂直起飞段实时高精度的轨迹测量与数据输出。基于激光雷达的火箭起飞段融合轨迹测量技术有效提高了火箭轨迹数据的测量精度和测量可靠性,保证了火箭发射安全。
其他语种文摘 The high-precision trajectory data of the rocket vertical take-off phase can be used to evaluate the technical performance and accuracy of the rocket, provide data reference for the improved design and finalization of the rocket, and also provide important trajectory reference data for the rocket take-off safety control system. The trajectory of the rocket in the vertical take-off phase changes greatly in the vertical rising direction, while the theoretical trajectory in both directions of the horizontal plane does not change. However, in the actual launch process, due to various interferences and certain delays and deviations in the real-time control of the rocket, the actual trajectory of the rocket in the horizontal plane will inevitably have a certain offset. The traditional trajectory measurement methods in the vertical take-off phase of rocket mainly include telemetry, optical and radio radar measurement. Due to the vibration caused by rocket launch, the trajectory measurement accuracy of telemetry system is not high, and it is difficult to obtain effective original analysis data after rocket failure. The optical measurement system uses images taken by multiple stations to obtain the rocket trajectory data after the rendezvous, but it is easily affected by the weather and has poor real-time performance. Due to the interference of ground clutter, it is difficult for radio radar to obtain effective trajectory data at this stage. It can be seen that there is no real-time trajectory measurement data in the vertical take-off phase of the rocket at present, and it is urgent to fill the data gap in this phase through new measurement methods.A single lidar can be used to measure the rocket trajectory in the take-off phase, but the trajectory data of the rocket in both directions of the horizontal plane in the vertical take-off phase changes very little, and only relying on a single lidar to measure the trajectory in the two directions will cause large errors. Compared with a single lidar measurement system, the field of view of the two multi-line lidars in the vertical direction can reach 25°, and a total of 128 laser scanning lines scan the rocket target area at the same time. In addition, the two lidars conduct fusion measurement at an intersection angle of 70°, which can cover the target area of the rocket with a larger angle range. Therefore, more target measurement points can be scanned, which can not only improve the fitting accuracy of the center of the ellipse, but also effectively ensure the reliability of the data measurement. In view of the difficult technical problem of obtaining real-time high-precision trajectory data in the rocket vertical takeoff phase, a new rocket take-off phase trajectory fusion measurement system based on lidar is proposed in this paper, which has the advantages of convenient station layout, easy installation and low power consumption. At the same time, it is less affected by weather, ground clutter signals and rocket vibration, and can effectively obtain the rocket real-time trajectory data. Two lidars are installed on a twodimensional precision turntable to form a fusion measurement system. Before the launch of the rocket, the two lidars jointly scan the middle and upper target areas of the rocket. Based on the proposed algorithm of laser point cloud data correction, the initial value solution of rocket target area trajectory and data fusion processing of the two trajectory data, the static and dynamic trajectory measurement accuracy of the lidar are calculated and analyzed to be 0.023 5 m and 0.036 6 m respectively.
来源 光子学报 ,2022,51(12):1212001 【核心库】
DOI 10.3788/gzxb20225112.1212001
关键词 激光雷达 ; 轨迹测量 ; 激光点云数据 ; 融合数据处理 ; 动态测量精度
地址

1. 北京跟踪与通信技术研究所, 北京, 100094  

2. 中国科学院西安光学精密机械研究所, 西安, 710119  

3. 中国科学院空间精密测量技术重点实验室, 中国科学院空间精密测量技术重点实验室, 西安, 710119  

4. 青岛海洋科学与技术国家实验室发展中心, 山东, 青岛, 266237

语种 中文
文献类型 研究性论文
ISSN 1004-4213
学科 航空、航天技术的研究与探索
基金 中国科学院青年创新促进会项目 ;  中国科学院空间精密测量技术重点实验室基金
文献收藏号 CSCD:7394994

参考文献 共 18 共1页

1.  刘岳国. 载人航天发射上升段飞行轨迹融合方法研究,2017 CSCD被引 1    
2.  郭军海. 一种运载火箭上升段轨迹的高精度确定方法. 宇航学报,2015,36(9):1018-1023 CSCD被引 5    
3.  Chu H P. GPS Multi-receiver direct position estimation for aerial applications. IEEE Transactions on Aerospace and Electronic Systems,2020,56(1):249-262 CSCD被引 2    
4.  Gschwendtner A B. Development of coherent laser radar at lincoln laboratory. Lincoln Laboratory Journal,2000,12(2):383-396 CSCD被引 25    
5.  崔彦平. 运动目标姿态与速度测量的理论及实验研究,2007 CSCD被引 1    
6.  朱亚明. 现役运载火箭遥测系统通用化技术. 上海航天,2020,37(S2):188-192 CSCD被引 1    
7.  张玲霞. 靶场光电经纬仪多台交会测量的融合处理及其仿真分析. 光子学报,2002,31(12):1528-1532 CSCD被引 16    
8.  侯宏录. 光电经纬仪异面交会测量及组网布站优化设计. 光子学报,2008,37(5):1023-1028 CSCD被引 9    
9.  Miyano T. Performance analysis of a rocket trajectory measurement system using GPS. Technical Report of Ieice Sane,2001,101:23-30 CSCD被引 1    
10.  王晓明. 用单站光电雷达一体化系统测量目标三维姿态. 光学精密工程,2011,19(8):1779-1786 CSCD被引 5    
11.  赵国艳. 外弹道高精度一体化新体制测量技术研究. 测控技术,2018,37(B09):407-411,416 CSCD被引 1    
12.  师恒. 基于激光雷达的火箭垂直起飞段姿态测量技术. 光子学报,2022,51(4):239-247 CSCD被引 1    
13.  师恒. 基于激光雷达的火箭主动漂移量测量技术. 红外与激光工程,2022,51(7):210-216 CSCD被引 2    
14.  Tian Z. Coordinate conversion of 3D laser scanning point cloud based on the residual correction model. Geospatial Information,2019,17(8):98-101,12 CSCD被引 1    
15.  吴昱晗. 一种基于点云匹配的激光雷达/IMU联合标定方法. 电子技术应用,2019,45(12):78-82 CSCD被引 7    
16.  胡绍林. 脉冲雷达跟踪测量数据处理技术,2007 CSCD被引 10    
17.  Guo C X. An analytical least-squares solution to the line scan LIDAR-camera extrinsic calibration problem. IEEE International Conference on Robotics & Automation,2013 CSCD被引 2    
18.  王召刚. 基于最小二乘交汇的弹道融合解算方法. 弹箭与制导学报,2011,31(3):172-176 CSCD被引 1    
引证文献 1

1 王紫蕊 基于改进最小二乘法的MEMS振镜模型参数辨识 激光与光电子学进展,2024,61(9):0923002
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号