高速超分辨结构光照明显微的关键技术及应用
High-Speed Structured Illumination Microscopy and Its Applications
查看参考文献95篇
文摘
|
光学显微成像技术无论是在临床诊疗还是在基础科学研究上都发挥着重要的作用。伴随着新型荧光探针、光学控制、探测器件的不断发展,超分辨光学显微技术突破了传统光学衍射极限的限制,为现代生物医学研究提供了新的工具。在超分辨显微成像技术中,结构光照明显微镜(SIM)通过空间编码的结构光照明样品,将样品部分超出衍射极限的高频信息调制到低频中,从而通过光学系统实现超分辨成像。SIM具有成像速度快,光漂白和光毒性弱以及对荧光染料的非特异性需求等优点,被广泛应用于活细胞超分辨光学显微成像。本文回顾了 SIM技术的重要原理与技术进步,重点介绍了 SIM硬件设计与图像重构算法中关键的实验要点与技术难点,列举了现阶段SIM在生物成像中的部分应用,探讨了 SIM未来的发展方向。期望本文能为SIM的设计和使用者提供一定的指导。 |
其他语种文摘
|
Optical microscopy performs an increasingly important role in clinical diagnosis and basic scientific research.With the development of novel fluorescence probes,light controllers,and detectors,super-resolution optical microscopy breaks through the diffraction limit and provides new tools for modern biomedical research.Among these techniques,structured illumination microscope (SIM) achieves super-resolution by using spatially coded structured illumination which down modulates spatial frequencies beyond the cutoff into the pass band of the microscope.SIM shows lower photo bleaching and phototoxicity,higher imaging speed,and no special requirements for fluorescent probes,which has significant advantages in application to live-cell biomedical research.In this paper,the important principles and technological progress during the development of SIM are firstly reviewed.Then we focus on the key experimental techniques and difficulties in hardware design and image reconstruction of SIM.Finally,the several applications in biological imaging are listed.It is expected that this review can provide guidance for designing and using SIM. |
来源
|
激光与光电子学进展
,2020,57(24):240001 【核心库】
|
DOI
|
10.3788/LOP57.240001
|
关键词
|
显微
;
荧光显微镜
;
超分辨显微镜
;
结构光照明显微镜
;
硬件设计方法
;
图像重建算法
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
西安交通大学物理学院, 陕西, 西安, 710049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1006-4125 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
中国博士后科学基金
;
国家重点研发计划
|
文献收藏号
|
CSCD:6882661
|
参考文献 共
95
共5页
|
1.
Born M.
Principles of optics (7th edition),2007:382-391
|
CSCD被引
1
次
|
|
|
|
2.
Abbe E. Contributions to the theory of the microscope and that microscopic perception.
Arch Anat Microscp Morphol Exper,1873,9:413-468
|
CSCD被引
1
次
|
|
|
|
3.
Berthelot J. Three-dimensional manipulation with scanning near-field optical nanotweezers.
Nature Nanotechnology,2014,9(4):295-299
|
CSCD被引
26
次
|
|
|
|
4.
Reimer L.
Transmission electron microscopy: physics of image formation and microanalysis,2013:1-2
|
CSCD被引
1
次
|
|
|
|
5.
Morita S.
Noncontact atomic force microscopy,2015
|
CSCD被引
2
次
|
|
|
|
6.
Huang B. Super-resolution fluorescence microscopy.
Annual Review of Biochemistry,2009,78(1):993-1016
|
CSCD被引
68
次
|
|
|
|
7.
Schermelleh L. A guide to super-resolution fluorescence microscopy.
Journal of Cell Biology,2010,190(2):165-175
|
CSCD被引
28
次
|
|
|
|
8.
Betzig E. Imaging intracellular fluorescent proteins at nanometer resolution.
Science,2006,313(5793):1642-1645
|
CSCD被引
365
次
|
|
|
|
9.
Hess S T. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.
Biophysical Journal,2006,91(11):4258-4272
|
CSCD被引
133
次
|
|
|
|
10.
Shroff H. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics.
Nature Methods,2008,5(5):417-423
|
CSCD被引
40
次
|
|
|
|
11.
Rust M J. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Nature Methods,2006,3(10):793-796
|
CSCD被引
380
次
|
|
|
|
12.
Bates M. Multicolor super-resolution imaging with photo-switchable fluorescent probes.
Science,2007,317(5845):1749-1753
|
CSCD被引
77
次
|
|
|
|
13.
Huang B. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
Science,2008,319(5864):810-813
|
CSCD被引
140
次
|
|
|
|
14.
Sengupta P. Superresolution imaging of biological systems using photoactivated localization microscopy.
Chemical Reviews,2014,114(6):3189-3202
|
CSCD被引
9
次
|
|
|
|
15.
Hell S W. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.
Optics Letters,1994,19(11):780-782
|
CSCD被引
330
次
|
|
|
|
16.
Klar T A. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.
PNAS,2000,97(15):8206-8210
|
CSCD被引
94
次
|
|
|
|
17.
Arroyo-Camejo S. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.
ACS Nano,2013,7(12):10912-10919
|
CSCD被引
10
次
|
|
|
|
18.
Li M Q. Structured illumination microscopy using digital micro-mirror device and coherent light source.
Applied Physics Letters,2020,116:233702
|
CSCD被引
7
次
|
|
|
|
19.
Gustafsson M G L. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination.
Proceedings of SPIE. 3919,2000:141-150
|
CSCD被引
3
次
|
|
|
|
20.
Hirano Y. Recent advancements in structured-illumination microscopy toward live-cell imaging.
Microscopy,2015,64(4):237-249
|
CSCD被引
6
次
|
|
|
|
|