帮助 关于我们

返回检索结果

高速超分辨结构光照明显微的关键技术及应用
High-Speed Structured Illumination Microscopy and Its Applications

查看参考文献95篇

赵天宇 1,2   汪召军 3   冯坤 3   梁言生 3   何旻儒 1,2   云雪 3   雷铭 3,2  
文摘 光学显微成像技术无论是在临床诊疗还是在基础科学研究上都发挥着重要的作用。伴随着新型荧光探针、光学控制、探测器件的不断发展,超分辨光学显微技术突破了传统光学衍射极限的限制,为现代生物医学研究提供了新的工具。在超分辨显微成像技术中,结构光照明显微镜(SIM)通过空间编码的结构光照明样品,将样品部分超出衍射极限的高频信息调制到低频中,从而通过光学系统实现超分辨成像。SIM具有成像速度快,光漂白和光毒性弱以及对荧光染料的非特异性需求等优点,被广泛应用于活细胞超分辨光学显微成像。本文回顾了 SIM技术的重要原理与技术进步,重点介绍了 SIM硬件设计与图像重构算法中关键的实验要点与技术难点,列举了现阶段SIM在生物成像中的部分应用,探讨了 SIM未来的发展方向。期望本文能为SIM的设计和使用者提供一定的指导。
其他语种文摘 Optical microscopy performs an increasingly important role in clinical diagnosis and basic scientific research.With the development of novel fluorescence probes,light controllers,and detectors,super-resolution optical microscopy breaks through the diffraction limit and provides new tools for modern biomedical research.Among these techniques,structured illumination microscope (SIM) achieves super-resolution by using spatially coded structured illumination which down modulates spatial frequencies beyond the cutoff into the pass band of the microscope.SIM shows lower photo bleaching and phototoxicity,higher imaging speed,and no special requirements for fluorescent probes,which has significant advantages in application to live-cell biomedical research.In this paper,the important principles and technological progress during the development of SIM are firstly reviewed.Then we focus on the key experimental techniques and difficulties in hardware design and image reconstruction of SIM.Finally,the several applications in biological imaging are listed.It is expected that this review can provide guidance for designing and using SIM.
来源 激光与光电子学进展 ,2020,57(24):240001 【核心库】
DOI 10.3788/LOP57.240001
关键词 显微 ; 荧光显微镜 ; 超分辨显微镜 ; 结构光照明显微镜 ; 硬件设计方法 ; 图像重建算法
地址

1. 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119  

2. 中国科学院大学, 北京, 100049  

3. 西安交通大学物理学院, 陕西, 西安, 710049

语种 中文
文献类型 综述型
ISSN 1006-4125
学科 物理学
基金 国家自然科学基金 ;  中国博士后科学基金 ;  国家重点研发计划
文献收藏号 CSCD:6882661

参考文献 共 95 共5页

1.  Born M. Principles of optics (7th edition),2007:382-391 CSCD被引 1    
2.  Abbe E. Contributions to the theory of the microscope and that microscopic perception. Arch Anat Microscp Morphol Exper,1873,9:413-468 CSCD被引 1    
3.  Berthelot J. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology,2014,9(4):295-299 CSCD被引 26    
4.  Reimer L. Transmission electron microscopy: physics of image formation and microanalysis,2013:1-2 CSCD被引 1    
5.  Morita S. Noncontact atomic force microscopy,2015 CSCD被引 2    
6.  Huang B. Super-resolution fluorescence microscopy. Annual Review of Biochemistry,2009,78(1):993-1016 CSCD被引 68    
7.  Schermelleh L. A guide to super-resolution fluorescence microscopy. Journal of Cell Biology,2010,190(2):165-175 CSCD被引 28    
8.  Betzig E. Imaging intracellular fluorescent proteins at nanometer resolution. Science,2006,313(5793):1642-1645 CSCD被引 365    
9.  Hess S T. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal,2006,91(11):4258-4272 CSCD被引 133    
10.  Shroff H. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods,2008,5(5):417-423 CSCD被引 40    
11.  Rust M J. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods,2006,3(10):793-796 CSCD被引 380    
12.  Bates M. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science,2007,317(5845):1749-1753 CSCD被引 77    
13.  Huang B. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science,2008,319(5864):810-813 CSCD被引 140    
14.  Sengupta P. Superresolution imaging of biological systems using photoactivated localization microscopy. Chemical Reviews,2014,114(6):3189-3202 CSCD被引 9    
15.  Hell S W. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters,1994,19(11):780-782 CSCD被引 330    
16.  Klar T A. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS,2000,97(15):8206-8210 CSCD被引 94    
17.  Arroyo-Camejo S. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano,2013,7(12):10912-10919 CSCD被引 10    
18.  Li M Q. Structured illumination microscopy using digital micro-mirror device and coherent light source. Applied Physics Letters,2020,116:233702 CSCD被引 7    
19.  Gustafsson M G L. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proceedings of SPIE. 3919,2000:141-150 CSCD被引 3    
20.  Hirano Y. Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy,2015,64(4):237-249 CSCD被引 6    
引证文献 8

1 张智敏 共路并行荧光辐射差分超分辨显微成像 中国激光,2021,48(16):1607002
CSCD被引 3

2 钟金钢 计算傅里叶显微成像研究进展 激光与光电子学进展,2021,58(18):1811009
CSCD被引 2

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号