高温合金盘锻件制备过程残余应力的演化规律及机制
Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings
查看参考文献40篇
文摘
|
高温合金盘锻件制备工艺过程中形成的内部残余应力是涡轮盘件尺寸精度和使用稳定性的重要影响因素。本文综述了高温合金盘锻件内部残余应力的中子衍射法和轮廓法测试技术,以及残余应力在固溶淬火、时效热处理和零件加工过程的分布特征、演化规律和内在机制:高温合金盘锻件的内部残余应力主要源于淬火过程的温度梯度,以弦向和径向应力为主,沿截面轮廓呈“内拉外压”特征分布,其数值与淬火态合金的屈服强度相当;时效热处理后小部分残余应力通过塑性变形和蠕变释放;热处理过程中强化相的析出与残余应力演化存在显著交互影响;零件加工过程中,残余应力会随着加工余量脱离本体而被部分释放,残余应力在再平衡过程发生变化所引起的附加力矩是加工变形的主要原因。 |
其他语种文摘
|
Significant interior residual stresses, which were generated during the manufacture process, could affect the machining dimension precision and structural stability during the subsequent machining process and service operation in the superalloys component, such as turbine disk. In this paper, the neutron diffraction method and contour method are described for measuring the distribution of interior residual stresses. The distribution, evolution of interior residual stress, and its mechanism are analyzed during quenching, ageing heat treatment and machining process in superalloys disk forging. The residual stresses are mainly generated by the temperature gradient formed during rapid cooling after solution heat treatment. After quenching, the residual stresses in hoop direction and radial direction of disc forging are significant, and its distribution along the profile is characterized by "internal tension and external pressure". The magnitudes of the residual stresses are equivalent to the yield strength of as-quenched alloys at room temperature. Quenching-induced residual stresses are partially relieved during the ageing process due to plastic strain and creep-controlled dislocation rearrangement. The precipitation behavior of γ" or y' phase during heat treatment has a significant interaction with the distribution and magnitude of residual stress. During the machining process, part of the residual stresses contributing to the equilibrium of the internal forces are removed along with the material. Additional moment caused by re-balance of residual stresses results in the serious consequences of distortion in the remaining body. |
来源
|
金属学报
,2019,55(9):1160-1174 【核心库】
|
DOI
|
10.11900/0412.1961.2019.00089
|
关键词
|
高温合金
;
残余应力
;
中子衍射
;
轮廓法
;
涡轮盘锻件
|
地址
|
1.
钢铁研究总院, 高温合金新材料北京市重点实验室, 北京, 100081
2.
北京钢研高纳科技股份有限公司, 北京, 100081
3.
中国航发沈阳发动机研究所, 沈阳, 110005
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
国家重点研发计划项目
|
文献收藏号
|
CSCD:6561575
|
参考文献 共
40
共2页
|
1.
谷月峰. 一种高性能航空涡轮盘用铸锻合金的研究进展.
金属学报,2015,51:1191
|
CSCD被引
17
次
|
|
|
|
2.
张北江. 高性能涡轮盘材料GH4065及其先进制备技术研究.
金属学报,2015,51:1227
|
CSCD被引
18
次
|
|
|
|
3.
Lu X D. High temperature structure stability of GH4169 superalloy.
Mater. Sci. Eng. A,2013,559:623
|
CSCD被引
18
次
|
|
|
|
4.
Du J H. High-temperature structure stability and mechanical properties of novel 718 superalloy.
Mater. Sci. Eng. A,2007,452/453:584
|
CSCD被引
15
次
|
|
|
|
5.
庄景云.
变形高温合金GH4169,2006:1
|
CSCD被引
11
次
|
|
|
|
6.
Geng L. Continuous cooling transformation behavior of Alloy 718.
Mater. Lett,1997,30:401
|
CSCD被引
8
次
|
|
|
|
7.
Dye D. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718.
Metall. Mater. Trans. A,2004,35:1703
|
CSCD被引
11
次
|
|
|
|
8.
Rist M A. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling.
Metall. Mater. Trans. A,2006,37:459
|
CSCD被引
9
次
|
|
|
|
9.
Karadge M. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds.
Metall. Mater. Trans. A,2011,42:2301
|
CSCD被引
13
次
|
|
|
|
10.
Foss B J. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000.
Acta Mater,2013,61:2548
|
CSCD被引
14
次
|
|
|
|
11.
Withers P J. Residual stress. Part 1 Measurement techniques.
Mater. Sci. Technol,2001,17:355
|
CSCD被引
62
次
|
|
|
|
12.
Aba-Perea P E. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design.
Mater. Des,2016,110:925
|
CSCD被引
9
次
|
|
|
|
13.
Rolph J. Stress relaxation through ageing heat treatment-A comparison between in situ and ex situ neutron diffraction techniques.
C. R. Phys,2012,13:307
|
CSCD被引
4
次
|
|
|
|
14.
Ghasri-Khouzani M. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions.
Mater. Sci. Eng. A,2017,707:689
|
CSCD被引
7
次
|
|
|
|
15.
Masoudi S. The effect of quenchinduced residual stresses on the distortion of machined thin-walled parts.
J. Mater. Eng. Perform,2015,24:3933
|
CSCD被引
7
次
|
|
|
|
16.
Krempaszky C. Measurement of marcoscopic residual stress and resulting distortion during machining.
Proc. MS&T 2005 Iron & Steel Society and TMS,2005:109
|
CSCD被引
1
次
|
|
|
|
17.
Withers P J. Residual stress. Part 2 Nature and origins.
Mater. Sci. Technol,2001,17:366
|
CSCD被引
35
次
|
|
|
|
18.
Shen G S. Integration and automation of residual stress and service stress modeling for superalloy component design.
Superalloy 2012,2012:129
|
CSCD被引
1
次
|
|
|
|
19.
Rolph J. Residual stress evolution during manufacture of aerospace forgings.
Superalloy 2012,2012:881
|
CSCD被引
1
次
|
|
|
|
20.
Dahan Y. Residual stresses in Inconel 718 engine disks.
MATEC Web Conf,2014,14:10003
|
CSCD被引
1
次
|
|
|
|
|