基于鲁棒${H_\infty }$滤波的锂离子电池SOC估计
Lithium-ion battery state of charge estimation based on a robust ${H_\infty }$ filter
查看参考文献26篇
文摘
|
荷电状态(State of charge, SOC)估计是电池管理系统的核心功能之一,它在电动汽车的生命周期中起着重要作用. 针对锂离子电池温度影响模型参数,进而导致SOC估计不准确的问题,本文提出了基于鲁棒${H_\infty }$滤波的SOC估计方法. 首先,以二阶Thevenin等效电路模型做为锂离子电池基础模型,并将温度对电池模型参数的影响建模为标称电阻值和电池总容量的加性变量,视温度变化为系统的外部扰动. 其次,采用滑动线性法对电池模型进行线性化,并在此基础上运用线性矩阵不等式技术设计了对SOC进行估计的鲁棒${H_\infty }$滤波器. 最后,分别采用四种不同类型的动态电流激励进行仿真实验验证,并将SOC的估计结果与kalman滤波对SOC的估计结果进行对比. 结果表明所设计的鲁棒${H_\infty }$滤波器能够实现对SOC更为准确的跟踪,同时对外部扰动具有较好的鲁棒性. |
其他语种文摘
|
The state of charge(SOC)estimation is one of the core functions of the battery management system;it can play a significant role in the life cycle of electric vehicles. The SOC estimation method has attracted considerable research attention in recent years, particularly about improving estimation accuracy. However, most studies are limited by only focusing on known or fixed battery model parameters and not considering their temperature dependence. This indicates a need to explore how the lithium-ion battery temperature affects the model parameters, which leads to inaccurate SOC estimation. The principal objective of this study is to investigate the robust ${H_\infty }$ filter-based method for the problem that temperature affects battery model parameters and thus leads to inaccurate SOC estimation. First, the second-order Thevenin equivalent circuit model with two parallel resistor-capacitor pairs is taken as the basic model of the lithium-ion battery. The influence of temperature on battery model parameters is modeled as an additive variable of the nominal resistance value and the total battery capacity, and the temperature change is considered an external disturbance of the system. Afterward, the sliding linear method is used to linearize this battery model;on this basis, a robust ${H_\infty }$ filter for SOC estimation is designed using linear matrix inequality technology. Finally, the effectiveness of the proposed approach is verified using four different types of dynamic current load profiles(the BJDST-Beijing Dynamic Stress Test, FUDS-Federal Urban Driving Schedule, US06-US06 Highway Driving Schedule and BJDST-FUDS-US06 joint dynamic test)compared with the Kalman filter-based SOC estimation method. The simulation analysis results indicate that the proposed SOC estimation approach can realize a higher SOC estimation accuracy even if the model parameters vary with temperature, and it has good robustness to external disturbances. |
来源
|
工程科学学报
,2021,43(5):693-701 【核心库】
|
DOI
|
10.13374/j.issn2095-9389.2020.09.21.002
|
关键词
|
锂离子电池
;
SOC估计
;
模型参数摄动
;
模型线性化
;
${H_\infty }$滤波器
|
地址
|
1.
吉林大学, 汽车仿真与控制国家重点实验室, 长春, 130025
2.
吉林大学汽车工程学院, 长春, 130025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
2095-9389 |
学科
|
电工技术 |
基金
|
国家重点研发计划资助项目
|
文献收藏号
|
CSCD:6964229
|
参考文献 共
26
共2页
|
1.
王晓兰. 基于融合模型的锂离子电池荷电状态在线估计.
工程科学学报,2020,42(9):1200
|
CSCD被引
11
次
|
|
|
|
2.
苏伟. 锂离子电池故障诊断技术进展.
储能科学与技术,2019,8(2):225
|
CSCD被引
21
次
|
|
|
|
3.
刘新天. 基于环境变量建模的锂电池SOC估计方法.
东南大学学报(自然科学版),2017,47(2):306
|
CSCD被引
7
次
|
|
|
|
4.
冯代伟. 具有电流偏差和噪声扰动的H_∞观测器在线估计电池SoC状态.
电子科技大学学报,2017,46(4):547
|
CSCD被引
2
次
|
|
|
|
5.
Lin X F. Modeling and estimation for advanced battery management.
Ann Rev Control Rob Autonom Syst,2019,2:393
|
CSCD被引
1
次
|
|
|
|
6.
Miao Z X. An SOC-based battery management system for microgrids.
IEEE Trans Smart Grid,2014,5(2):966
|
CSCD被引
8
次
|
|
|
|
7.
谈发明. 动力电池SOC估计的一种新型鲁棒UKF算法.
汽车工程,2019,41(8):944
|
CSCD被引
6
次
|
|
|
|
8.
Cheng K W E. Battery-management system (BMS) and SOC development for electrical vehicles.
IEEE Trans Veh Technol,2011,60(1):76
|
CSCD被引
52
次
|
|
|
|
9.
Dey S. Nonlinear observer designs for state-of-charge estimation of lithium-ion batteries.
2014 American Control Conference,2014:248
|
CSCD被引
1
次
|
|
|
|
10.
Bhangu B S. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles.
IEEE Trans Veh Technol,2005,54(3):783
|
CSCD被引
18
次
|
|
|
|
11.
He H W. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach.
Energies,2011,4(4):582
|
CSCD被引
47
次
|
|
|
|
12.
丁镇涛. 基于安时积分和无迹卡尔曼滤波的锂离子电池SOC估算方法研究.
中国机械工程,2020,31(15):1823
|
CSCD被引
6
次
|
|
|
|
13.
靳博文. 基于内阻功率消耗的锂电池SOC估计.
汽车工程,2020,42(8):1008
|
CSCD被引
2
次
|
|
|
|
14.
Codeca F. On battery state of charge estimation: A new mixed algorithm.
2008 IEEE International Conference on Control Applications,2008:102
|
CSCD被引
1
次
|
|
|
|
15.
Hu Y R. Battery state of charge estimation in automotive applications using LPV techniques.
Proceedings of the 2010 American Control Conference,2010:5043
|
CSCD被引
1
次
|
|
|
|
16.
Hu Y. Battery cell state-of-charge estimation using linear parameter varying system techniques.
J Power Sources,2012,198:338
|
CSCD被引
4
次
|
|
|
|
17.
Zhang Y. State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles.
IET Control Theory Appl,2013,8(3):160
|
CSCD被引
1
次
|
|
|
|
18.
Liu C Z. A state of charge estimation method based on H∞observer for switched systems of lithium-ion nickelmanganese-cobalt batteries.
IEEE Trans Ind Electron,2017,64(10):8128
|
CSCD被引
6
次
|
|
|
|
19.
Dey S. Nonlinear robust observers for state-ofcharge estimation of lithium-ion cells based on a reduced electrochemical model.
IEEE Trans Control Syst Technol,2015,23(5):1935
|
CSCD被引
6
次
|
|
|
|
20.
Wang T H. H∞observer-based battery fault estimation for HEV application.
IFAC Proc Vol,2012,45(30):206
|
CSCD被引
1
次
|
|
|
|
|