五华河流域非点源污染风险区和风险路径识别
Identifying risk areas and risk paths of non-point source pollution inWuhua River Basin
查看参考文献42篇
文摘
|
非点源污染是亟待解决的水环境问题之一,确定非点源污染过程中的潜在风险区和风险路径是解决非点源污染问题的关键。引入景观生态学中的最小累积阻力模型,以高污染负荷的耕地、建设用地为“源”,运用表示下垫面产流性质的地形湿度指数和CN值构建阻力面,对五华河流域的非点源污染高风险区和风险路径进行可视化识别和分析。结果显示:①在下垫面产流作用下,五华河流域低产流区主要分布在流域西南部,高产流区呈“人”形贯穿全流域。 ②最小累积阻力模型能够有效识别流域内非点源污染风险区和风险路径,五华河流域非点源污染高风险区分布于迥龙、田心、龙母、铁场、登云、通衢、鹤市、紫市、岐岭、华城、转水、潭下、水寨等地的河道两岸,以耕地为“源”的非点源污染风险路径与建设用地为“源”的非点源污染风险路径在空间分布上差异较大。③耕地对五华河水质的影响大于建设用地对五华河水质的影响,耕地中的富营养物质和沉积物更容易随地表径流进入受纳水体。④流域尺度上治理以耕地为“源”的非点源污染应在邻近耕地的河流两岸建立一定宽度的植被缓冲区,治理以建设用地为“源”的非点源污染宜围绕关键源区进行治理。本研究为非点源污染风险区和风险路径的识别提供一种新的思路,为进一步开展非点源污染治理提供理论依据。 |
其他语种文摘
|
Non- point source pollution is one of the most severe problems impacting water environments. Identifying potential risk areas and risk paths contributing to non- point source pollution is the soution to this problem. This study introduces the minimum cumulative resistance model of landscape ecology, which is based on land use and soil mapping at a scale of 1∶100000 and DEM data with a resolution of 30 m. The model takes high pollution-loaded cultivated land and construction land as the main sources and uses the Topographic Wetness Index and Runoff Curve Numbers, which can describe the underlying resistance surface runoff yield characteristics, to visually identify and analyze the risk areas and risk paths of the Wuhua River Basin. The results show that underlying surface runoff production results in low- yield flow areas that are mainly concentrated in the southwest of the basin, while high- yield flow areas herringbone throughout the study area. The minimum cumulative resistance model can effectively identify the risk areas and risk paths in this basin. The high-risk areas of non-point source pollution are mainly distributed in Jionglong, Tianxin, Longmu, Tiechang, Dengyun, Tongqu, Heshi, Zishi, Qiling, Huacheng, Zhuanshui, Tanxia and Shuizai, which are located along both sides of the river. The spatial distributions of the risk paths of cultivated land and construction land are significantly different. The effects of cultivated land on water quality of the river are greater than those of construction land on it, and the nutrients and sediments from cultivated land are more likely to run into the receiving water via surface runoff. Vegetation buffer zones should be set up on both sides of the river adjacent to cultivated land when we deal with non-point source pollution that originates from cultivated land, and the harnessment of non- point source pollution originating from construction land should be monitored around major source areas. This study provides a novel method for the identification of source areas and risk paths of non- point source pollution and a theoretical basis to formulate future management strategies. |
来源
|
地理学报
,2018,73(9):1765-1777 【核心库】
|
DOI
|
10.11821/dlxb201809012
|
关键词
|
非点源污染
;
风险区识别
;
风险路径识别
;
最小累积阻力模型
;
五华河流域
|
地址
|
1.
华南师范大学地理科学学院, 广州, 510631
2.
密歇根州立大学地球与环境科学系, 美国, 东兰辛, 48823
3.
广州地理研究所, 广州, 510070
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
环境污染及其防治 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6322275
|
参考文献 共
42
共3页
|
1.
李潇然. 非点源污染输出对土地利用和社会经济变化响应的案例研究.
生态学报,2016,36(19):6050-6061
|
CSCD被引
7
次
|
|
|
|
2.
尹才. 基于增强回归树的流域非点源污染影响因子分析.
应用生态学报,2016,27(3):911-919
|
CSCD被引
18
次
|
|
|
|
3.
Dowd B M. Agricultural nonpoint source water pollution policy: The case of California's Central Coast.
Agriculture Ecosystems & Environment,2008,128(3):151-161
|
CSCD被引
26
次
|
|
|
|
4.
黄宁. 基于“源-汇”理论的流域非点源污染控制景观格局调控框架———以厦门市马銮湾流域为例.
应用生态学报,2016,27(10):3325-3334
|
CSCD被引
15
次
|
|
|
|
5.
李铸衡. 土地利用变化情景下浑河-太子河流域的非点源污染模拟.
应用生态学报,2016,27(9):2891-2898
|
CSCD被引
10
次
|
|
|
|
6.
White M J. Evaluating nonpoint source critical source area contributions at the watershed scale.
Journal of Environmental Quality,2009,38(4):1654-1663
|
CSCD被引
3
次
|
|
|
|
7.
Zhou H. Assessing the risk of phosphorus loss and identifying critical source areas in the Chaohu Lake Watershed, China.
Environmental Management,2011,48(5):1033-1043
|
CSCD被引
3
次
|
|
|
|
8.
周慧平. 关键源区识别:农业非点源污染控制方法.
生态学报,2005,25(12):3368-3374
|
CSCD被引
39
次
|
|
|
|
9.
Sivertun A. Non-point source critical area analysis in the Gisselo Watershed using GIS.
Environmental Modelling & Software,2003,18(10):887-898
|
CSCD被引
31
次
|
|
|
|
10.
Endreny T A. Watershed weighting of export coefficients to map critical phosphorous loading areas.
Journal of the AmericanWater Resources Association,2010,39(1):165-181
|
CSCD被引
1
次
|
|
|
|
11.
Hughes K J. Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes.
Journal of Hydrology,2005,304(1/4):430-445
|
CSCD被引
14
次
|
|
|
|
12.
Niraula R. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF.
Ecological Modelling,2013,268(23):123-133
|
CSCD被引
21
次
|
|
|
|
13.
王妞. 基于地形指数的流域非点源磷素输出关键源区识别.
水文,2016,36(2):12-16
|
CSCD被引
2
次
|
|
|
|
14.
刘杰. 基于GIS的滇池流域景观格局优化.
自然资源学报,2012,27(5):801-808
|
CSCD被引
37
次
|
|
|
|
15.
Dong J. Ecological network construction based on minimum cumulative resistance for the city of Nanjing, China.
ISPRS International Journal of Geo-Information,2015,4(4):2045-2060
|
CSCD被引
2
次
|
|
|
|
16.
Blazquez-Cabrera S. Influence of separating home range and dispersal movements on characterizing corridors and effective distances.
Landscape Ecology,2016,31(10):2355-2366
|
CSCD被引
4
次
|
|
|
|
17.
陈昕. 基于“重要性-敏感性-连通性”框架的云浮市生态安全格局构建.
地理研究,2017,36(3):471-484
|
CSCD被引
160
次
|
|
|
|
18.
Wang J. Identification of the "source" and "sink" patterns influencing non-point source pollution in the Three Gorges Reservoir Area.
Journal of Geographical Sciences,2016,26(10):1431-1448
|
CSCD被引
2
次
|
|
|
|
19.
付永虎.
高集约化农区投入减量化与低环境风险的土地利用系统设计:理论与模式,2016
|
CSCD被引
2
次
|
|
|
|
20.
Djodjic F. Distributed, high-resolution modelling of critical source areas for erosion and phosphorus losses.
Ambio,2015,44(2):241-251
|
CSCD被引
1
次
|
|
|
|
|