电子皮肤热点核心材料及其在生命健康领域中的应用研究进展
Research progress in core materials of electronic skin and applications in field of life and health
查看参考文献110篇
文摘
|
人体皮肤能够感知外界的信息,在与外界交流中起着重要的作用。模仿人体皮肤特性和环境感知能力的电子皮肤在医疗监控、仿生假肢与机器人触觉感知等领域中有着广泛的应用。与传统的可穿戴传感器相比,电子皮肤更轻、更灵活、更具延展性,而且具有无线、透明、与人体皮肤兼容等特性,已成为新兴的研究领域之一。电子皮肤可以连续检测人体的大量物理和生化参数、人体运动、气体等,以实时监测人体健康、体育运动以及各种环境中的气体。本文综述了电子皮肤所使用的最新材料,包括零维(0D)、一维(1D)、二维(2D)和三维(3D)微纳米材料、聚合物材料、水凝胶材料及其复合材料等;详细归纳了基于这些热点核心材料所构建的电子皮肤在健康监测、运动监测以及气体监测等生命健康领域中的应用;指出了电子皮肤在研究过程中依然存在着成本高、工艺复杂等技术难题,但电子皮肤发展趋势朝着多功能化和多种外界刺激同步检测发展,并且在医疗设备、机器技术及未来的制造领域中应用前景广阔。 |
其他语种文摘
|
Human skin can sense the information from the environment and play a significant role in the contact with the outside world.Electronic skins,which mimic the characteristics of human skin and the ability to perceive the environment have a wide range of applications in the fields of medical monitoring,bionic prostheses and robotic tactile perception.Compared with traditional wearable sensors,electronic skin is lighter,more flexible,more malleable,and has the characteristics of wireless,transparent,and compatibility with human skin,therefore,has become one of the emerging research fields.The electronic skin can continuously sense large number of physical and biochemical parameters of the human body,human motion and gas to monitor human health,sports condition and surrounding gases in various environments in real-time.In this review,the state-of-the-art of the materials used to making electronic skins,including zero-dimensional(0D),one-dimensional(1D),two-dimensional(2D)and three-dimensional(3D)micro/nano-materials,polymeric materials,hydrogel materials and their composites,were discussed,and the practical applications of the electronic skin constructed based on these core materials were concluded in terms of health monitoring,motion monitoring as well as gas monitoring.It was pointed out that there are still some remaining technical problems in the research process of electronic skin such as high cost and complex process.The development trend of electrode skin was towards multi-function and simultaneous detection of multiple external stimuli,and it had broad application prospects in the fields of medical equipment robbotics and future manufacturing. |
来源
|
材料工程
,2022,50(2):23-37 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000318
|
关键词
|
电子皮肤
;
纳米材料
;
健康监测
;
运动监测
;
气体监测
|
地址
|
1.
浙江大学机械工程学院, 杭州, 310027
2.
浙江大学宁波研究院, 浙江, 宁波, 315100
3.
浙江大学工程师学院, 杭州, 310015
4.
中国科学院上海高等研究院绿色化学工程技术研究与发展中心, 上海, 201210
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金资助项目
;
上海市自然科学基金
|
文献收藏号
|
CSCD:7201671
|
参考文献 共
110
共6页
|
1.
Tessarolo M. Recent progress in wearable fully textile chemical sensors.
Advanced Materials Technologies,2018,3(10):1700310
|
CSCD被引
4
次
|
|
|
|
2.
Jeon J. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites.
Adv Mater,2013,25(6):850-855
|
CSCD被引
24
次
|
|
|
|
3.
Harris K D. Flexible electronics under strain:a review of mechanical characterization and durability enhancement strategies.
Journal of Materials Science,2015,51(6):2771-2805
|
CSCD被引
18
次
|
|
|
|
4.
Park S I. Soft,stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics.
Nat Biotechnol,2015,33(12):1280-1286
|
CSCD被引
25
次
|
|
|
|
5.
Park D W. Graphenebased carbon-layered electrode array technology for neural imaging and optogenetic applications.
Nat Commun,2014,5:52-58
|
CSCD被引
15
次
|
|
|
|
6.
Kim J. Wearable biosensors for healthcare monitoring.
Nat Biotechnol,2019,37(4):389-406
|
CSCD被引
83
次
|
|
|
|
7.
Wang X. Recent progress in electronic skin.
Advanced Engineering Materials,2015,2(10):1500169
|
CSCD被引
1
次
|
|
|
|
8.
Khatib M. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations.
Adv Mater,2020,32(17):2000246
|
CSCD被引
5
次
|
|
|
|
9.
Jeerapan I. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing.
Advanced Functional Materials,2019,30(29):1900147
|
CSCD被引
1
次
|
|
|
|
10.
Rogers J A. Materials and mechanics for stretchable electronics.
Science,2010,327(5973):1603-1607
|
CSCD被引
194
次
|
|
|
|
11.
Hammock M L. 25th anniversary article:the evolution of electronic skin(e-skin):a brief history,design considerations,and recent progress.
Adv Mater,2013,25(42):5997-6038
|
CSCD被引
121
次
|
|
|
|
12.
Xu S. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems.
Nat Commun,2013,4:1543
|
CSCD被引
66
次
|
|
|
|
13.
Li T. Vibro-perception of optical bio-inspired fiber-skin.
Sensors,2018,18(5):1531
|
CSCD被引
1
次
|
|
|
|
14.
Yao G. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing.
Advanced Functional Materials,2019,30(6):1907312
|
CSCD被引
2
次
|
|
|
|
15.
Wang H. 3D-printed flexible tactile sensor mimicking the texture and sensitivity of human skin.
Advanced Materials Technologies,2019,4(9):1900147
|
CSCD被引
4
次
|
|
|
|
16.
Zhang S. Ultra-flexible perceptual photonic-skin by using optical fiber as artificial mechanoreceptor.
Microsystem Technologies,2019,25(11):4341-4347
|
CSCD被引
1
次
|
|
|
|
17.
Yang L. Graphene oxide glue-electrode for fabrication of vertical,elastic,conductive columns.
ACS Nano,2017,11(3):2944-2951
|
CSCD被引
4
次
|
|
|
|
18.
Yao H B. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design.
Adv Mater,2013,25(46):6692-6698
|
CSCD被引
71
次
|
|
|
|
19.
Ai Y. All rGO-on-PVDF-nanofibers based self-powered electronic skins.
Nano Energy,2017,35:121-127
|
CSCD被引
6
次
|
|
|
|
20.
Choi S. A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals.
Sensors and Actuators,2006,128(2):317-326
|
CSCD被引
1
次
|
|
|
|
|