新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究:来自流体包裹体的指示
Research onEmplacement Depths of Permian and Triassic Pegmatites in Altay, Xinjiang, China: Indications from Fluid Inclusions
查看参考文献90篇
文摘
|
伟晶岩侵位深度与伟晶岩成岩成矿的温度、压力相联系,它间接地影响着岩浆演化的热历史和成矿物质的迁移、富集、沉淀过程。本文选取新疆阿尔泰山脉代表性4条二叠纪伟晶岩、5条三叠纪伟晶岩,开展伟晶岩早期结构带及晚期石英核中石英矿物捕获的含液体CO_2流体包裹体(B型)显微测温学研究。卡鲁安805、806、807号脉中石英-钠长石-锂辉石带中石英/锂辉石矿物捕获的B型流体包裹体显示与熔体-流体包裹体(A_2型)共生的特征,指示其形成于岩浆-热液过渡阶段体系,其他伟晶岩早期结构带中B型流体包裹体呈负晶型,孤立状分布,与熔体包裹体(A_1型)共生,指示其具有岩浆成因特征。三叠纪伟晶岩早期结构带中B型流体包裹体的盐度为2.20%~3.89%,均一温度为400~581 ℃,计算的捕获流体压力为235~308 MPa,对应的侵位深度为8.4~11.0 km。而二叠纪伟晶岩早期结构带中B型流体包裹体的盐度为4.62%~6.54%,均一温度为430~580 ℃,捕获的流体压力为319~406 MPa,对应的侵位深度为11.4~14.5 km。研究结果表明,三叠纪伟晶岩侵位深度明显不同于二叠纪伟晶岩侵位深度。三叠纪伟晶岩侵位相对较浅,并显示复杂矿化类型,如卡鲁安805、806、807号脉的Li矿化,柯鲁木特112号脉的Li-Be-Nb-Ta矿化以及可可托海3号脉的Li-Be-Nb-Ta-Cs-Rb-Hf矿化,指示侵位较浅的伟晶岩很可能更有利于岩浆分异演化以及成矿作用发生。 |
其他语种文摘
|
The invasion depth, commonly, has close relation to temperature and pressure of diagenesis and mineralization of pegmatite, which indirectly influences the thermal history of magmatic evolution and influences the processes of migration, enrichment and precipitation of metallogenetic materials. In this work, 4 Permian pegmatites and 5 Triassic pegmatites were selected for conducting the microthermometry of type-B fluid inclusions which were captured by quartz in the early and late textural zones of pegmatites and were aqueous carbon dioxide fluid inclusions. The type-B fluid inclusions in Kaluan ore district (805, 806, and 807) which were captured by quartz/spodumeneare generally syngenetic with melt-fluid inclusions(type-A_2), indicating that they formed from magma-hydrotherm system. Whereas, the type-B fluid inclusions in the early textural zones of other pegmatites are negative crystal shape, isolated, generally syngenetic with melt inclusions(type-A_1), indicating magmatic genesis. The salinity value of type-B fluid inclusion ranges from 2.20% to 3.89%NaCleqv; the total homogenization temperature ranges from 400 to 581℃ in the early textural zones of Triassic pegmatites, and the calculated pressure ranges from 235 to 308 MPa, corresponding to emplacement depth within the limits of 8.4 to 11.0 km. Whereas, type-B fluid inclusions in the early textural zones of Permian pegmatites manifested that their salinity values are within the range of 4.62% to 6.54%NaCleqv; total homogenization temperature ranges between 430 and 580℃, and the calculated pressure ranges from 319 to 406 MPa, which corresponds to emplacement depth within the limits of 11.4 to 14.5 km. The results suggest that there is an obvious discrepancy of emplacement depth between the two periods. Triassic pegmatites have a shallower depth and are more fertile and more complex than that of the Permian, such as Li-mineralization in Kaluan ore district (805, 806, and 807), Li-Be-Nb-Ta-mineralization in Kelumute 112, and Li-Be-Nb-Ta-C-Rb-Hf-mineralization in Keketuohai No.3 pegmatite, demonstrating that the relatively shallow emplacement depth is conductive to evolution and mineralization of pegmatite-forming melt. |
来源
|
矿物学报
,2016,36(4):571-585 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2016.04.018
|
关键词
|
阿尔泰造山带
;
伟晶岩
;
流体包裹体
;
压力
;
深度
|
地址
|
中国科学院地球化学研究所, 中科院地球内部物质高温高压实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
中国科学院地球化学研究所矿床地球化学国家重点实验室开放课题资助基金
;
新疆有色金属工业(集团)有限责任公司科研项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:5887878
|
参考文献 共
90
共5页
|
1.
吴柏青. 试论新疆阿尔泰花岗伟晶岩的成因.
新疆矿产地质,1989(1):60-70
|
CSCD被引
11
次
|
|
|
|
2.
邹天人. 新疆阿尔泰造山花岗岩和非造山花岗岩及其判别标志.
地质学报,1988(3):229-243
|
CSCD被引
15
次
|
|
|
|
3.
Liu F. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton.
Ore Geology Reviews,2014,56:209-219
|
CSCD被引
35
次
|
|
|
|
4.
Lu Z H. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon Usbnd Pb and Hf isotopes.
Lithos,2012,154(6):374-391
|
CSCD被引
64
次
|
|
|
|
5.
Wang T. SHRIMP U-Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite.
Ore Geology Reviews,2007,32(s1/s2):325-336
|
CSCD被引
86
次
|
|
|
|
6.
Zhu Y F. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China.
Journal of Asian Earth Sciences,2006,27(1):61-77
|
CSCD被引
128
次
|
|
|
|
7.
陈剑锋.
阿尔泰3号伟晶岩脉缓倾斜部分岩浆的形成与演化,2011:1-87
|
CSCD被引
3
次
|
|
|
|
8.
马占龙. 新疆卡鲁安矿区伟晶岩锆石U-Pb 定年、铪同位素组成及其与哈龙花岗岩成因关系研究.
地球化学,2015(1):9-26
|
CSCD被引
33
次
|
|
|
|
9.
任宝琴. 阿尔泰造山带伟晶岩年代学及其地质意义.
矿物学报,2011,31(3):587-596
|
CSCD被引
59
次
|
|
|
|
10.
Cerny P. Theclassificationofgranitic pegmatites revisited.
Canadian Mineralogist,2005,43(6):2005-2026
|
CSCD被引
128
次
|
|
|
|
11.
London D. A petrologic assessment of internal zonation in granitic pegmatites.
Lithos,2014,184:74-104
|
CSCD被引
55
次
|
|
|
|
12.
Skinner B. Hydrothermal mineral deposits: what we do and don't know.
Geochemistry of hydrothermal ore deposits,1997,3:1-30
|
CSCD被引
1
次
|
|
|
|
13.
张德会. 成岩成矿深度:主要影响因素与压力估算方法.
地质通报,2011,30(1):112-125
|
CSCD被引
42
次
|
|
|
|
14.
Jahns R. Internal evolution of pegmatite bodies.
Mineral Assoc Canada Short Course,1982,8:293-327
|
CSCD被引
1
次
|
|
|
|
15.
Jahns R H. Layered pegmatite-aplite intrusives.
Mineralogical Society of America Special Paper,1963,1:78-92
|
CSCD被引
1
次
|
|
|
|
16.
Lesher C. Thermal diffusion in petrology.
Diffusion, Atomic Ordering, and Mass Transport,1991:396-451
|
CSCD被引
1
次
|
|
|
|
17.
London D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase equilibrium experiments. Amer Mineral Jahns Mem.
American Mineralogist,1986,71(3/4):376-395
|
CSCD被引
53
次
|
|
|
|
18.
Thomas R. Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review.
Zeitschrift fur Geologische Wissenschaften,2006,34(3/4):159
|
CSCD被引
1
次
|
|
|
|
19.
Ginsburg A.
Principles of geology of the granitic pegmatites,1979:296
|
CSCD被引
1
次
|
|
|
|
20.
Cerny P. Granite-related ore deposits.
Society of Economic Geologists,2005,100:337-370
|
CSCD被引
1
次
|
|
|
|
|