基于遥感和SEBAL模型的塔里木河干流区蒸散发估算
Remote Sensing and the SEBAL Model for Estimating Evapotranspiration in the Tarim River
查看参考文献20篇
文摘
|
运用1985年、2000年和2010年遥感资料与SEBAL模型估算了塔里木河干流区蒸散发。结果表明:该区蒸散发量较大,介于0~5.11 mm/d之间;靠近河道区蒸散发明显大于远离河道区;各土地利用/覆被类型蒸散发大小依次为:水体>耕地>林地>草地>未利用地>居工地,主要与其植被覆盖度和水分供给条件有关;而日总蒸散发大小顺序为:草地>未利用地>耕地>林地>水体>居工地,这与各土地利用/覆被类型面积密切相关。在1985-2010年间,塔里木河干流区日总蒸散发量先减小后增大;上游平均日总蒸散发量为中游和下游的1.27倍和1.42倍。 2000年塔里木河干流区日总蒸散发比1985年减少了6.80×10~4m~3,原因是中游和下游日总蒸散发减小,而上游日总蒸散发量却增加了3.02×10~5m~3。2010年干流区日总蒸散发比2000年高6.78×10~5m~3,其中上游和中游日总蒸散发量增加了1.19×10~6m~3,而下游却降低了5.16×10~5m~3,主要受中上游地区绿洲耕地面积扩张,水资源开发量过大,下游来水量减少的影响。 |
其他语种文摘
|
The paper estimates evapotranspiration of the mainstream by using remote sensing data in 1985,2000,and 2010 respectively and SEBAL model in the mainstream of Tarim River.The results show that evapotranspiration in the area ranges from 0 to 5.11 mm/d;the evapotranspiration of the area close to the river was significantly higher than the area away from the river;the land use types associated with evapotranspiration are listed in the order of water bodies>farmland>woodland>grassland>unused land>home-work sites,which is mainly related to its vegetation coverage and water supply;the total daily evapotranspiration islisted in the order of grassland>unused land>farmland>forestland>water bodies>home-work sites,which are closely related to the land use types.During 1985-2010,the total daily evapotranspiration in the Tarim River basin decreased firstly and then increased;the average total daily evapotranspiration in the upstream is 1.27 times that of the middle-stream and is 1.42 times that of the lower-stream.The total evapotranspiration in the Tarim River basin in 2000 decreased by 6.80×10~4m~3compared with in 1985,because the total daily evapotranspiration in the middle and lower reaches decreased while the upper reaches increased by 3.02×10~5m~3.The total daily evapotranspiration in the mainstream of the river in 2010 is 6.78×10~5m~3higher than that in 2000,with the upper and middle reaches up by 1.19×10~6m~3and the lower reach down by 5.16×10~5m~3,which is mainly due to the fact that rapid expansion of cultivated land and excessive exploitation of water resources in the middle and upper reaches resulted from water decrease in the downstream. |
来源
|
地理学报
,2011,66(9):1230-1238 【核心库】
|
关键词
|
遥感
;
SEBAL
;
蒸散发
;
塔里木河
|
地址
|
中国科学院新疆生态与地理研究所, 荒漠与绿洲生态国家重点实验室, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
自然地理学 |
基金
|
国家973计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:4304627
|
参考文献 共
20
共1页
|
1.
Jiang Le. A satellite-based daily actual evapotranspiration estimation algorithm over South Florida.
Global and Planetary Change,2009,67(1/2):62-77
|
CSCD被引
13
次
|
|
|
|
2.
Choudhury B J. A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data:I.Model description and comparison with observations.
Journal of Hydrology,1998,205(3/4):164-185
|
CSCD被引
9
次
|
|
|
|
3.
Bastiaanssen W G M. Remote sensing for irrigated agriculture:Examples from research and possible applications.
Agricultural Water Management,2000,46(2):137-155
|
CSCD被引
27
次
|
|
|
|
4.
陈忠升. 近50a来塔里木河干流年径流量变化趋势及预测.
干旱区地理,2011,34(1):43-51
|
CSCD被引
27
次
|
|
|
|
5.
陈亚宁. 新疆塔里木河下游断流河道输水与生态恢复.
生态学报,2007,27(2):538-545
|
CSCD被引
88
次
|
|
|
|
6.
李发鹏. 基于MODIS数据的黄河三角洲区域蒸散发量时空分布特征.
农业工程学报,2009,25(2):113-120
|
CSCD被引
25
次
|
|
|
|
7.
杜嘉. 基于SEBAL模型的别拉洪河流域典型生态系统蒸散量估算.
资源科学,2009,31(10):1755-1763
|
CSCD被引
4
次
|
|
|
|
8.
杨永民. 基于SEBS模型的黑河流域蒸散发.
兰州大学学报:自然科学版,2008,44(5):1-6
|
CSCD被引
29
次
|
|
|
|
9.
韩松俊. 塔里木河流域山区和绿洲潜在蒸散发的不同变化及影响因素.
中国科学:E辑,2009,39(8):1375-1383
|
CSCD被引
22
次
|
|
|
|
10.
赵丽雯. 基于FAO-56双作物系数法估算农田作物蒸腾和土壤蒸发研究----以西北干旱区黑河流域中游绿洲农田为例.
中国农业科学,2010,43(19):4016-4026
|
CSCD被引
33
次
|
|
|
|
11.
Wang J. Sensitivity analysis of the surface energy balance algorithm for land(Sebal).
Transactions of the ASABE,2009,52(3):801-811
|
CSCD被引
2
次
|
|
|
|
12.
Teixeira A H D C. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle Sao Francisco River Basin,Brazil Part A:Calibration and validation.
Agricultural and Forest Meteorology,2009,149(3/4):462-476
|
CSCD被引
7
次
|
|
|
|
13.
Wu C D. Application of SEBAL and Markov models for future stream flow simulation through remote sensing.
Water Resources Management,2010,24(14):3773-3797
|
CSCD被引
7
次
|
|
|
|
14.
Wang J. Aggregation of land surface parameters in the oasis-desert systems of north-west China.
Hydrological Processes,1998,12(13/14):2133-2147
|
CSCD被引
9
次
|
|
|
|
15.
Bastiaanssen W G M.
The use of remote sensing to improve irrigation water management in developing countries.Operational Remote Sensing for Sustainable Development,1999:3-17
|
CSCD被引
1
次
|
|
|
|
16.
陈云浩. 中国西北地区蒸发散量计算的遥感研究.
地理学报,2001,56(3):261-268
|
CSCD被引
47
次
|
|
|
|
17.
Brunal J P. Estimation of sensible heat fiux from measurement of surface temperature and air temperature at two meters:Application to detemine actural evaporation rate.
Agric.Forest Meteo,1989,46:179-191
|
CSCD被引
6
次
|
|
|
|
18.
Jensen M E. Evapotranspiration and Irrigation water equirements.
ASCE Manuals and RePortson Engineering Praetiee,1990(70)
|
CSCD被引
1
次
|
|
|
|
19.
Li S B. Satellite-based actual evapotranspiration estimation in the middle reach of the Heihe River Basin using the SEBAL method.
Hydrological Processes,2010,24(23):3337-3344
|
CSCD被引
10
次
|
|
|
|
20.
刘志武. 遥感技术和SEBAL模型在干旱区腾发量估算中的应用.
清华大学学报:自然科学版,2004,44(3):421-424
|
CSCD被引
31
次
|
|
|
|
|