利用引晶技术制备大尺寸镍基单晶涡轮导向叶片
Manufacturing of large size nickel-based single crystal turbine guide vanes by grain continuator technology
查看参考文献30篇
文摘
|
采用引晶技术制备了大尺寸双联镍基单晶涡轮导向叶片。利用高速凝固法(high rate solidification,HRS)进行单晶叶片定向凝固,并对单晶叶片进行宏观腐蚀,揭示叶片单晶完整性。通过扫描电镜、电子背散射衍射(EBSD)技术及高温持久实验,评估单晶叶片实际性能。同时,利用有限元模拟软件ProCAST对单晶叶片的定向凝固过程进行数值模拟及分析。结果表明:采用引晶技术可有效避免杂晶缺陷的形成,并可成功制备单晶完整性良好的大尺寸双联涡轮导向叶片,但在Vane 1叶片主晶与引入晶体之间仍会形成角度分别为1.5°和2.7°小角度晶界(LABs)缺陷;LABs使得单晶叶片的高温持久性能虽稍有降低(寿命损失小于15%、断后伸长率损失小于7%),但仍可满足叶片的服役性能。根据ProCAST软件对大尺寸双联单晶导向叶片凝固过程的模拟结果得知,设置引晶结构后,叶片的原始凝固路径得到了优化,叶片前缘位置的过冷条件得到了改善,杂晶缺陷的形核概率得到了降低,有效避免了杂晶缺陷的形成。 |
其他语种文摘
|
Large size nickel-based single crystal twin turbine guide vanes(TGVs) were prepared by grain continuator(GC) technology. Directional solidification was performed in a high-rate-solidification(HRS)Bridgman vacuum furnace. Then, the macroetching test was carried out to reveal the single crystal integrality of TGVs. Scanning electron microscopy(SEM), electron backscatter diffraction(EBSD) technology, and high temperature stress rupture experiment were applied to evaluate the actual properties of TGVs. Simultaneously, the professional finite element modeling(FEM) ProCAST software was used to simulate the directional solidification process of single crystal TGVs. The experimental results show that the formation of stray grain(SG)defect can be avoided effectively, and integrity large size single crystal twin TGVs can be prepared successfully by adopting GC technology. However, the low angle grain boundaries(LABs) defects are formed inevitably, and the boundaries angle between primary crystal and GC crystal in Vane 1 are 1.5° and 2.7° respectively. Despite the mechanical performance at high temperature degrades slightly(stress rupture life loss less than 15%, and elongation loss less than 7%), the service performance of TGVs is still satisfied perfectly. According to the solidification process results of the large size twin TGVs simulated by ProCAST software, it is found that the initial solidification path of TGVs is optimized, meanwhile, and the undercooling condition at the leading edge of TGVs is improved by adding the GC structure. In addition, the nucleation probability of SG defect is reduced significantly, and the formation of SG defects is avoided effectively. |
来源
|
航空材料学报
,2023,43(3):22-31 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000150
|
关键词
|
镍基高温合金
;
涡轮导向叶片
;
单晶生长
;
引晶技术
;
晶体取向
;
杂晶缺陷
|
地址
|
1.
海洋装备用金属材料及其应用国家重点实验室, 海洋装备用金属材料及其应用国家重点实验室, 辽宁, 鞍山, 114021
2.
鞍山钢铁集团有限公司, 辽宁, 鞍山, 114021
3.
沈阳工业大学材料科学与工程学院, 沈阳, 110870
4.
潍坊科技学院, 山东, 寿光, 262700
5.
中国科学院金属研究所, 师昌绪先进材料创新中心, 沈阳, 110016
6.
上海大学材料科学与工程学院, 上海, 200444
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:7495483
|
参考文献 共
30
共2页
|
1.
Giamei A F. Development of single crystal superalloys: a brief history.
Adv Mater Process,2013,171:26-30
|
CSCD被引
6
次
|
|
|
|
2.
Xiao J H. Oxidation behavior of high Hf nickel-based superalloy in air at 900,1000 and 1100°C.
Int J Min Met Mater,2021,28:1957-1965
|
CSCD被引
7
次
|
|
|
|
3.
Kracke A. Superalloys,the most successful alloy system of modern times-past,present,and future.
The 7th International Symposium on Superalloy 718 and Derivatives,2010:13-50
|
CSCD被引
1
次
|
|
|
|
4.
赵云松. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响.
材料工程,2022,50(9):127-136
|
CSCD被引
5
次
|
|
|
|
5.
曹凯莉. Ru对镍基单晶高温合金凝固特性、TCP相析出及蠕变性能影响的研究进展.
材料工程,2022,50(1):80-92
|
CSCD被引
4
次
|
|
|
|
6.
秦健朝. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响.
材料工程,2020,48(10):114-122
|
CSCD被引
3
次
|
|
|
|
7.
赵云松. S元素对镍基高温合金及其涂层组织和性能的影响研究进展.
航空材料学报,2021,41(3):96-110
|
CSCD被引
1
次
|
|
|
|
8.
张旭东. 激光熔融沉积钛合金-镍基高温合金异种材料界面冶金控制.
航空材料学报,2021,41(3):139-147
|
CSCD被引
1
次
|
|
|
|
9.
刘昭昭. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究.
航空材料学报,2021,41(6):44-50
|
CSCD被引
11
次
|
|
|
|
10.
Reed R C.
The superalloys: fundamentals and applications,2006
|
CSCD被引
127
次
|
|
|
|
11.
Ospennikova O G. Methods of enhancing the operating characteristics of gas-turbine blades.
Russ Metall(Metally),2017,13:1112-1117
|
CSCD被引
1
次
|
|
|
|
12.
Brundidge C. Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys.
International symposium on Liquid Metal Processing and casting,2009
|
CSCD被引
1
次
|
|
|
|
13.
Meng X B. Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy.
Metall Mater Trans A,2013,44:1955-1965
|
CSCD被引
23
次
|
|
|
|
14.
Huang Y Q. Formation of sliver defect in Ni-based single crystal superalloy.
Metall Mater Trans A,2020,51:99-103
|
CSCD被引
3
次
|
|
|
|
15.
Huang Y Q. Evolution of sliver defect in Ni-based single crystal superalloy.
Metall Mater Trans A,2020,51:6364-6372
|
CSCD被引
2
次
|
|
|
|
16.
Wang F. Effect of ceramic cores on the freckle formation during casting Nibased single crystal superalloys.
Metall Mater Trans A,2018,50:804-815
|
CSCD被引
3
次
|
|
|
|
17.
Meyer Ter Vehn M. Undercooling related casting defects in single crystal turbine blades.
Superalloys 1996,1996:471
|
CSCD被引
4
次
|
|
|
|
18.
Ma D X. Novel casting processes for single-crystal turbine blades of superalloys.
Front Mech Eng,2017,13:3-16
|
CSCD被引
10
次
|
|
|
|
19.
Yosginari A. Nickel base superalloys single crystal growth technology for large size buckets in heavy duty gas turbines.
The international gas turbine and aeroengine congress and exposition,1991:91-GT-022
|
CSCD被引
1
次
|
|
|
|
20.
Wang Q J. Quantified relation between grain boundary angle and interfacial stability of PWA1484 superalloy during thermal exposure.
Metall Mater Trans A,2020,51:380-389
|
CSCD被引
3
次
|
|
|
|
|