激光熔覆TiC/FeAl原位复合涂层
In-situ TiC/FeAl Composite Coating Fabricated by Laser Cladding
查看参考文献22篇
文摘
|
用激光熔覆法制备了TiC/FeAl原位复合涂层,使用光学显微镜(OM)和扫描电镜(SEM)观察了熔覆层的微观结构,使用能谱分析仪(EDS)和X射线衍射仪(XRD)分析了涂层的化学成分和物相,研究了熔覆层的显微硬度和耐磨性。结果表明:沿着熔池深度的方向从熔池底部到熔池顶部,FeAl基体从粗大的树枝晶渐渐转变为细小的等轴晶。原位TiC越过熔池界面进入基板表层,大部分TiC颗粒存在FeAl晶粒内部,熔池顶部的TiC颗粒含量较多。沿着熔池深度的方向从涂层顶部到基板,涂层的硬度呈阶梯形分布,熔池顶部涂层的硬度最高,涂层的硬度和耐磨性分别比基板高6倍和52倍。涂层的磨损机理为典型的磨粒磨损。 |
其他语种文摘
|
The in-situ TiC/FeAl composite coating was fabricated by laser cladding technology in this paper. The microstructure of the coating was characterized by metallographic microscope (OM), scanning electron microscopy(SEM).The phases in the coating were examined by energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), microhardness and wear resistance of the coating were also investigated. The results show that from the bottom to the surface of the melt pool along the depth the coarse dendrite grain is changed into fine quiaxed rosette grain. Some TiC particles going across the interface exist in the surface layer of the substrate. Most of TiC particles existing in the grains are nucleation centers during FeAl matrix solidification. The content of TiC particles in the top of the coating is much higher than that in other zone of the coating. Meanwhile, the microhardness and wear resistance of in-situ laser cladding are 5 times and 52 higher than those of substrate, respectively. And the wear mechanism of the composite coating is abrasive wear. |
来源
|
材料研究学报
,2017,31(11):860-866 【核心库】
|
DOI
|
10.11901/1005.3093.2017.148
|
关键词
|
材料表面与界面
;
激光熔覆
;
原位TiC/FeAl复合涂层
;
微观结构
;
硬度
;
耐磨性
|
地址
|
1.
华东交通大学材料科学与工程学院, 南昌, 330013
2.
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
;
江西省科技厅项目
;
江西省教育厅项目
|
文献收藏号
|
CSCD:6124919
|
参考文献 共
22
共2页
|
1.
姚汉文. 高速铁路道岔区桥梁设计综述.
铁道标准设计,2014,58(7):85
|
CSCD被引
1
次
|
|
|
|
2.
Imran M K. Direct metal deposition(DMD) of H_(13) tool steel on copper alloy substrate:evaluation of mechanical properties.
Materials Science and Engineering A,2011,528:3342
|
CSCD被引
6
次
|
|
|
|
3.
Du B. Laser cladding of in situ TiB_2/Fe composite coating on steel.
Applied Surface Science,2008,254(20):6489
|
CSCD被引
14
次
|
|
|
|
4.
Pu Y. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiCreinforced Ti3Al intermetallic matrix composite coatings on pure Ti by laser cladding.
Applied Surface Science,2008,255(5):2697
|
CSCD被引
10
次
|
|
|
|
5.
刘发兰. 基材属性对Ni60A-WC激光熔覆涂层性能的影响.
中国有色金属学报,2014,24(5):1319
|
CSCD被引
13
次
|
|
|
|
6.
赵文军. 20Cr2Ni4A齿轮钢高温渗碳工艺.
金属热处理,2015,40(12):142
|
CSCD被引
9
次
|
|
|
|
7.
Wang S L. Microstructure and mechanical properties of Ni-P-SiN nanowire electroless composite coatings.
Applied Surface Science,2015,357:328
|
CSCD被引
6
次
|
|
|
|
8.
Bhowmick S. Tribological behavior of Al-6.5%,-12%,-18.5% Si alloys during machining using CVD diamond andDLCcoated tools.
Surface & Coatings Technology,2015,284:353
|
CSCD被引
5
次
|
|
|
|
9.
Zhao L Z. Ultra-fine Al-Si hypereutectic alloy fabricated by direct metal deposition.
Materials and Design,2014,56:542
|
CSCD被引
8
次
|
|
|
|
10.
李德英. 激光熔覆Fe-Al复合涂层组织及性能研究.
铸造技术,2012,33(8):930
|
CSCD被引
1
次
|
|
|
|
11.
王新洪. 激光原位合成TiB_2-TiC颗粒增强铁基涂层.
焊接学报,2012,33(8):25
|
CSCD被引
2
次
|
|
|
|
12.
Li J. Phase constituent and microstructure of Ti_3Al/Fe_3Al+TiN/TiB_2 composite coating on titanium alloy.
Surface Review & Letters,2012,18(18):103
|
CSCD被引
1
次
|
|
|
|
13.
Cinca N. An overview of intermetallic research and application:status of thermal spray coatings.
Journal of Materials Research and Technology,2013,2(1):75
|
CSCD被引
9
次
|
|
|
|
14.
Zhao L Z. Study on Fe-Al-Si situ composite coating fabricated by laser cladding.
Applied Surface Science,2012,258:3368
|
CSCD被引
11
次
|
|
|
|
15.
赵龙志. Al含量对Al-Fe-Si/Al原位复合材料的影响.
材料工程,2014,4:7
|
CSCD被引
1
次
|
|
|
|
16.
Romero F J N. Synthesis of a (MoSi_2, Mo_5Si_3)/SiC composite using an in situ solidstate displacement reaction between Mo2C and Si.
Journal of the Ceramic Society of Japan,2000,108(1263):957
|
CSCD被引
1
次
|
|
|
|
17.
International Organization for Standardization.
ISO 6507:Metallic materials-Vickers hardness test. 3thed,2005
|
CSCD被引
1
次
|
|
|
|
18.
Zhao L Z. Phase-field simulation of dendrite growth of magnesium alloy under non-isothermal solidification.
Advanced Materials Research,2014,848:231
|
CSCD被引
1
次
|
|
|
|
19.
伍林. 微观相场模拟B2-FeAl金属间化合物有序畴界的形成和迁移.
中国有色金属学报,2013,23(3):687
|
CSCD被引
2
次
|
|
|
|
20.
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron.
Metallurgical and Materials Transactions B,1970,1(7):1987
|
CSCD被引
266
次
|
|
|
|
|