复合材料电导率对雷击烧蚀损伤程度的影响
Influence of Electrical Conductivity of Composites on Ablation Damage Degree Subjected to Lightning Strike
查看参考文献18篇
文摘
|
根据雷击过程中能量转换关系,建立基于热-电耦合的复合材料雷击烧蚀损伤分析模型,该模型考虑了复合材料电导率随热解度的变化。通过该模型,对比复合材料三个方向电导率多个数量级变化后的雷击烧蚀损伤。结果表明:在相同雷电流参数下,复合材料沿不同方向的电导率变化对雷击烧蚀损伤影响程度不同;沿纤维方向电导率提升,表观损伤面积和损伤深度均下降;垂直于纤维方向电导率提升,表观损伤面积增加,损伤深度下降;沿厚度方向电导率提升,表观损伤面积下降,损伤深度增加;三个方向任一电导率提升,复合材料总体的损伤体积均下降,当各方向上的电导率分别提高1、2、3个数量级,损伤体积影响程度最大的是沿纤维方向变化,分别降低47.83%、 75.08%和97.82%,沿厚度方向变化影响程度次之,分别降低36.25%、53.44%、65.54%,垂直于纤维方向影响程度最小,分别降低8.72%、12.58%和24.76%;提高复合材料电导率,能够对雷击防护起到明显作用,对于防雷击效果的全面评估需要二维损伤和三维损伤相结合。 |
其他语种文摘
|
According to the energy conversion relationship during the lightning strike, a lightning damage analysis model based on coupled electrical-thermal simulation for composites was established. The variation of electrical conductivity of the composite with pyrolysis was considered in the model. By means of the model, the lightning ablation damage of the composite material with multiple changes of conductivity was compared in three directions. The results show that under the same lightning current parameters, the electrical conductivity changes of composite materials in different directions have different effects on the ablation damage caused by lightning strikes. When the electrical conductivity along the fiber direction increases, both the apparent damage area and the damage depth decreased. While the electrical conductivity perpendicular to the fiber direction increases, the apparent damage area increased and the damage depth decreased. When the electrical conductivity along the thickness increases, the apparent damage area increased and the damage depth increased. When the conductivity along any of the three directions increases, the total damage volume of the composite decreased. When the conductivity of each direction increases by 1, 2, 3 orders of magnitude, the greatest changes in damage volume are observed along the fiber direction, which are decreased by 47.83 %, 75.08 % and 97.82 % respectively, followed by changes along the thickness direction, which are decreased by 36.25 %, 53.44 % and 65.54 %, and the least changes are perpendicular to the fiber direction, which are reduced by 8.72. %, 12.58 % and 24.76 %. The increase of the conductivity of the composite material play a significant role in lightning strike protection. A comprehensive assessment of the lightning protection effect requires a combination of two-dimensional damage and three-dimensional damage. |
来源
|
航空材料学报
,2018,38(5):123-131 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2018.000037
|
关键词
|
雷击烧蚀损伤
;
电导率变化
;
损伤体积
;
全面评估
|
地址
|
空军工程大学, 西安, 710038
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6335303
|
参考文献 共
18
共1页
|
1.
Wang F. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike.
Composite Structures,2014,117:222-233
|
CSCD被引
1
次
|
|
|
|
2.
James A.
MACEE composite structures technology NASA-CR-172360,1984
|
CSCD被引
1
次
|
|
|
|
3.
.
Lightning Direct Effects Handbook,AGATE-WP3,1-031027-043-design guideline,2002
|
CSCD被引
1
次
|
|
|
|
4.
Dong Q. Influencing factor analysis based on electrical-thermal-pyrolytic simulation of carbon fiber composites lightning damage.
Composite Structures,2016,140:1-10
|
CSCD被引
8
次
|
|
|
|
5.
丁宁. 复合材料层合板雷击烧蚀损伤模拟.
航空学报,2013,34(2):301-308
|
CSCD被引
23
次
|
|
|
|
6.
丁宁. 复合材料层合板雷击烧蚀损伤影响因素分析.
材料热处理学报,2014,35(2):186-192
|
CSCD被引
10
次
|
|
|
|
7.
Wang F S. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike.
Composite Structures,2014,117(2):222-233
|
CSCD被引
16
次
|
|
|
|
8.
Yin J J. Lightning strike ablation damage characteristic analysis for carbon fiber/epoxy composite laminate with fastener.
Applied Composite Materials,2016,23(4):821-837
|
CSCD被引
9
次
|
|
|
|
9.
Wang Y Q. Thermal ablation in fiber-reinforced composite laminates subjected to continuing lightning current.
Aiaa/asce/ahs/asc Structures Structural Dynamicsand Materials Conference,2015
|
CSCD被引
1
次
|
|
|
|
10.
Hirano Y. Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix.
Composites Science and Technology,2016,127:1-7
|
CSCD被引
5
次
|
|
|
|
11.
陈淑仙. 树脂基复合材料固化过程中的温度和热应力场三维瞬态分析.
电子科技大学学报,2014,43(4):547-551
|
CSCD被引
5
次
|
|
|
|
12.
Bai Y. Modeling of thermophysical properties and thermal responses for FRP composites in fire.
Asia-Pacific Conference on FRP in Structures,2007
|
CSCD被引
2
次
|
|
|
|
13.
.
Abaqus theory manual: 2, 12, 1 coupled thermal-electrical analysis,Abaqus 6, 14 Online Documentation,2014
|
CSCD被引
1
次
|
|
|
|
14.
胡汉平.
热传导理论,2010
|
CSCD被引
13
次
|
|
|
|
15.
Dong Q. Coupled electricalthermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike.
Polymer,2015,56:385-394
|
CSCD被引
14
次
|
|
|
|
16.
Abdelal G. Nonlinear numerical modeling of lightning strike effect on composite panels with temperature dependent material properties.
Compos Struct,2014,109:268-278
|
CSCD被引
24
次
|
|
|
|
17.
Lee J H. Determination of kinetic parameters during the thermal decomposition of epoxy/carbon fiber composite material.
Korean Journal of Chemical Engineering,2013,30(4):955-962
|
CSCD被引
4
次
|
|
|
|
18.
Lattimer B Y. Properties of composite materials for thermal analysis involving fires.
Composite:Part A,2006,37(7):1068-1081
|
CSCD被引
1
次
|
|
|
|
|