航空发动机用高温合金复杂薄壁精密铸件尺寸精度控制技术研究进展
Research progress on dimensional accuracy control technologies of complex thin-walled superalloy investment castings for aero-engines
查看参考文献65篇
文摘
|
高温合金主要应用于涡轮后机匣、扩压器、预旋喷嘴等航空关键热端部件,采用整体精密铸造技术取代“分体铸造+焊接”成形方法,可减少零件数量和加工工序、提升可靠性、减轻质量,是航空发动机先进材料加工关键核心技术之一。然而复杂薄壁构件液态精密成型存在尺寸超差难题,导致发动机气动性能降低,装配精度下降,是长期制约我国航空发动机关键构件制造质量的瓶颈问题。本文综述目前国内外在高温合金精密铸造尺寸精度控制方面的研究进展,并对基于数字化和智能化技术的发展趋势进行了前瞻性分析和探讨,未来迫切需要构建液态精密成型数字孪生平台,发展更先进的尺寸变形精准定量智能预测方法以及压蜡模具内腔型面设计理论。 |
其他语种文摘
|
Superalloys are predominantly employed to crucial aviation hot-end components such as turbine rear casings,diffusers, and pre-swirl nozzles. The investment casting technology supersedes “casting + welding” forming approaches,which reduces the number of parts and processing procedures,offers improved reliability and mass reduction. Therefore,investment casting is a pivotal technology for aviation component manufacturing. However,the casting of complex thin-walled components encounters challenges with dimensional accuracy, impacting engine aerodynamic performance and assembly precision, which has become a bottleneck problem restricting the manufacturing quality of key structural components of aero-engines in China for a long time. This article reviews the current advancement in the dimensional accuracy control for superalloy investment castings at home and abroad. A forward-looking analysis and discussion on development trends are conducted, particularly focusing on digital and intelligent technologies. There is an urgent need to build a digital twin platform for investment casting in the future and to develop more advanced accurate,quantitative and intelligent prediction methods for dimensional deformation and die profile design theory. |
来源
|
航空材料学报
,2024,44(2):31-44 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000231
|
关键词
|
航空发动机
;
高温合金
;
尺寸精度控制
;
熔模精密铸造
;
复杂薄壁
|
地址
|
1.
上海交通大学材料科学与工程学院, 上海市先进高温材料及其精密成形重点实验室, 上海, 200240
2.
中国航发北京航空材料研究院, 先进高温结构材料国家重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金创新研究群体项目
;
国家自然科学基金
;
国家重点研发计划项目
|
文献收藏号
|
CSCD:7851402
|
参考文献 共
65
共4页
|
1.
Liu L. The progress of investment casting of nickelbased superalloys.
Foundry,2012,61:1273-1285
|
CSCD被引
1
次
|
|
|
|
2.
陈荣章. 铸造高温合金发展的回顾与展望.
航空材料学报,2000,20(1):55-61
|
CSCD被引
33
次
|
|
|
|
3.
丁立铭. 21世纪航空制造技术将发生质的飞跃-谈高推重比发动机的关键制造技术(上).
国际航空,2002(1):53-55
|
CSCD被引
4
次
|
|
|
|
4.
张立同.
近净形熔模精密铸造理论与实践,2007
|
CSCD被引
19
次
|
|
|
|
5.
Robinson J J. Introducing the nominees for the greatest materials moments in history.
JOM,2006,58(11):51-55
|
CSCD被引
1
次
|
|
|
|
6.
孙宝德. 高温合金超限构件精密铸造技术及发展趋势.
金属学报,2022,58(4):412-427
|
CSCD被引
7
次
|
|
|
|
7.
Dong Y W. Modeling of shrinkage during investment casting of thin-walled hollow turbine blades.
J Mater Process Tech,2017,244:190-203
|
CSCD被引
1
次
|
|
|
|
8.
汪东红. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形.
金属学报,2022,58(1):89-102
|
CSCD被引
3
次
|
|
|
|
9.
金海鹏. 民机材料适航符合性验证方法和技术发展.
航空材料学报,2022,42(3):1-11
|
CSCD被引
1
次
|
|
|
|
10.
Sabau A S.
Predicting pattern tooling and casting dimensions for investment casting, Phase Ⅲ,2007
|
CSCD被引
1
次
|
|
|
|
11.
Sabau A S. Material properties for predicting wax pattern dimensions in investment casting.
Materials Science and Engineering: A,2003,362(1):125-134
|
CSCD被引
14
次
|
|
|
|
12.
Kuo C C. A simple method of improving warpage and cooling time of injection molded parts simultaneously.
The International Journal of Advanced Manufacturing Technology,2022,122(2):619-637
|
CSCD被引
1
次
|
|
|
|
13.
Zhang Z Y. The factors influencing the casting's dimension precision of molten mould during the process of making mould.
Applied Mechanics Reviews,2002,15(2):15
|
CSCD被引
1
次
|
|
|
|
14.
Wang N. Ceramic core shifting monitoring through clamping rods optimization for wax pattern of turbine blade.
The International Journal of Advanced Manufacturing Technology,2017,91(5):2193-2204
|
CSCD被引
1
次
|
|
|
|
15.
Wang D H. Numerical simulation of the wax injection process for investment casting.
Materials and Manufacturing Processes,2013,28(2):220-224
|
CSCD被引
3
次
|
|
|
|
16.
Wang D H. Cavity pressure and dimensional accuracy analysis of wax patterns for investment casting.
Materials and Manufacturing Processes,2013,28(6):637-642
|
CSCD被引
2
次
|
|
|
|
17.
Wang D H. Experimental and numerical analysis on core deflection during wax injection.
Materials and Manufacturing Processes,2013,28(11):1209-1214
|
CSCD被引
5
次
|
|
|
|
18.
Liu C H. The assembly variation modeling for the rear casing wax part based on polar coordinate.
Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference,2015
|
CSCD被引
1
次
|
|
|
|
19.
张国栋. 航空装备电子束增材制造技术发展及路线图.
航空材料学报,2023,43(1):28-38
|
CSCD被引
6
次
|
|
|
|
20.
Mishra S. Reverse solidification path methodology for dewaxing ceramic shells in investment casting process.
Materials and Manufacturing Processes,2010,25(12):1385-1388
|
CSCD被引
6
次
|
|
|
|
|