非晶透明导电氧化物薄膜研究进展
Progress in Amorphous Transparent Conducting Oxide Thin Films
查看参考文献105篇
文摘
|
随着有机/聚合物衬底的广泛使用,非晶透明导电氧化物薄膜由于兼具优异的透明与导电性、性能稳定、表面平整光滑、易于刻蚀和大面积制备、兼容现有工艺、无须后续退火处理进而简化工艺流程等优点,已应用于薄膜晶体管、有机/聚合物太阳能电池、电致变色、电磁屏蔽等诸多领域。尽管非晶态透明导电氧化物的原理与结晶态的基本相同,但其不是简单的结晶态透明氧化物的非晶态,而是特定组元在特定条件下制备获得的。在简要介绍透明与导电及两者间的耦合关系的基础上,重点介绍了更为一般的非晶半导体氧化物的研究历程及其特点,并与结晶态透明导电氧化物薄膜对比,指出N型非晶透明导电氧化物的电子结构特征是其金属阳离子结构为(n-1) d~(10) ns~0,由于s电子轨道呈球对称,且相邻重叠积分较大,迁移率较高,结构容错性较强,因此可以稳定保持其结晶态时的中近程结构及优异的特性,并详细介绍了表征其近程结构的中程有序、因缺乏衡量周期的量子数而使用更为一般的态密度以及非晶结构的亚稳特性。在此基础上,详细举例介绍了N型和P型非晶透明导电氧化物体系的性质和特点,特别介绍了铟系非晶透明导电氧化物的种类和特点,其中又以氧化铟锌的性能最为优异。由于目前的非晶透明导电氧化物体系主要是针对N型导电的,故P型非晶透明导电氧化物的例子较少。最后结合产业动态简要介绍了非晶透明导电氧化物薄膜的应用领域,并结合当前研究现状和发展趋势指出了今后三个可能的研究发展方向: (1)非铟系透明导电氧化物的研究与开发有待进一步加强; (2)另辟蹊径开发P型透明导电氧化物的基本原理和材料; (3)充分发挥非晶透明导电氧化物的优势,拓展其在部分半导体领域的应用。 |
其他语种文摘
|
With the increasing wide application of organic or polymer substrates,amorphous transparent conducting oxides (a-TCOs) had been widely applied to thin-film transistors,polymer /organic solar cells,electrochromic devices,electromagnetic shielding and other areas due to the combined transparency and conductivity as well as stable properties,processing compatibilities with current technologies and free of post-annealing. A-TCOs films were not the amorphous counterpart of crystalline TCOs but prepared with special elements under certain conditions. After the brief introduction to the working principle of TCO,the even general amorphous transparent semiconducting oxide was addressed intensively. It was worth to note that compared with c-TCOs and classic silicon,the features of electronic structure of a-TCOs were the cations with special configuration (n-1) d~(10) ns~0. The stable amorphous structure and excellent properties can be conserved due to larger overlap integral between the adjacent atoms,high mobility and robustness. Particularly,the near range structure characterization such as the medium range order,band structure described by density of states and the metastability of amorphous structure and the related properties were introduced as well. Afterwards,the properties and features of N-type and P-type a-TCOs were exampled in details,especially the indium-based systems,such as excellent a-In-Zn-O films. Less example of P-type a-TCOs were shown as no general principle had been formed for that. Finally,many state-of-art applications including thin-film transistor are introduced. Based upon the current status and emerging trend,three potential research perspective directions of a-TCO have been delivered: (1) to further investigate non-indium based a-TCO; (2) to develop on the P-type TCO with novel principle and material systems; (3) to enable the alternative application that occupied by conventional silicon previously. |
来源
|
航空材料学报
,2018,38(1):1-16 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2017.000042
|
关键词
|
薄膜
;
非晶
;
透明导电氧化物
;
稳定性
;
氧化铟
|
地址
|
1.
中国航发北京航空材料研究院透明件研究所, 北京, 100095
2.
北京市先进运载系统结构透明件工程技术研究中心, 北京市先进运载系统结构透明件工程技术研究中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
物理学 |
基金
|
中国航发北京航空材料研究院益材青年基金
|
文献收藏号
|
CSCD:6177712
|
参考文献 共
105
共6页
|
1.
刘宏燕. 透明导电氧化物薄膜材料研究进展.
航空材料学报,2015,35(4):63-82
|
CSCD被引
22
次
|
|
|
|
2.
Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes.
Nature Photonics,2012,6(12):809-817
|
CSCD被引
64
次
|
|
|
|
3.
Yu X. Metal oxides for optoelectronic applications.
Nat Mater,2016,15(4):383-396
|
CSCD被引
26
次
|
|
|
|
4.
Anon.
Indium Zinc Oxide target
|
CSCD被引
1
次
|
|
|
|
5.
王华. 透明导电氧化物薄膜及其制备方法.
材料工程,2005(9):59-63
|
CSCD被引
5
次
|
|
|
|
6.
.
ORAMA-Oxide Materials for the Post-Silicon Electronics Era
|
CSCD被引
1
次
|
|
|
|
7.
张晓锋. 银基透明导电多层膜界面研究进展.
功能材料,2011,42(增刊1):6-10
|
CSCD被引
1
次
|
|
|
|
8.
Orita M. Deep-ultraviolet transparent conductive β-Ga_2O_3 thin films.
Appl Phys Lett,2000,77(25):4166-4169
|
CSCD被引
30
次
|
|
|
|
9.
Kim J. Ultrawide band gap amorphous oxide semiconductor,Ga-Zn-O.
Thin Solid Films,2016,614:84-89
|
CSCD被引
1
次
|
|
|
|
10.
Gao J. Physics of transparent conductors.
Adv Phys,2016,65(6):553-617
|
CSCD被引
3
次
|
|
|
|
11.
Ginley D S.
Handbook of transparent conductors,2010
|
CSCD被引
4
次
|
|
|
|
12.
Walsh A. Origins of bandgap renormalization in degenerately doped semiconductors.
Phys Rev B,2008,78:075211
|
CSCD被引
6
次
|
|
|
|
13.
黄昆.
固体物理学,1985
|
CSCD被引
10
次
|
|
|
|
14.
Hosono H. Ionic amorphous oxide semiconductors Material design,carrier transport,and device application.
J Non-Cryst Solids,2006,352:851-858
|
CSCD被引
19
次
|
|
|
|
15.
Hosono H. Novel oxide amorphous semiconductors transparent conducting amorphous oxides.
J Non-Cryst Solids,1996,203:334-344
|
CSCD被引
10
次
|
|
|
|
16.
Shimakawa K. Electronic transport in degenerate amorphous oxide semiconductors.
Phil Mag Lett,1999,79(9):755-761
|
CSCD被引
1
次
|
|
|
|
17.
Stewart K A. Thin-film transistor mobility limits considerations.
J Soc Inf Display,2016,24(6):386-393
|
CSCD被引
2
次
|
|
|
|
18.
Orita M. Amorphous transparent conductive oxide InGaO_3 (ZnO) m (m≤4): a Zn 4s conductor.
Phil Mag B,2001,81(5):505-515
|
CSCD被引
4
次
|
|
|
|
19.
Walsh A. Interplay between order and disorder in the high performance of amorphous transparent conducting oxides.
Chem Mater,2009,21:5119-5124
|
CSCD被引
2
次
|
|
|
|
20.
Medvedeva J E. Long-range structural correlations in amorphous ternary In-based oxides.
Vacuum,2015,114:142-149
|
CSCD被引
1
次
|
|
|
|
|