表观扩散系数值评估较低级别胶质瘤IDH-1突变状态和瘤细胞增殖活性的价值
The value of apparent diffusion coefficient value in evaluating the IDH-1 mutation status and tumor cell proliferation activity of lower-grade gliomas
查看参考文献32篇
文摘
|
目的探讨表观扩散系数(apparent diffusion coefficient, ADC)值在较低级别胶质瘤(lower-grade gliomas, LGG)异柠檬酸脱氢酶-1(isocitrate dehydrogenase 1, IDH-1)突变状态和瘤细胞增殖活性中的评估价值。材料与方法回顾性分析经病理证实并测定IDH-1突变状态和Ki-67增殖指数的44例LGG患者病例,其中IDH-1突变型24例,IDH-1野生型20例。在ADC图上测量病灶实质的最小ADC值(ADC_(min))、平均ADC值(ADC_(mean))和对侧镜像正常脑白质的ADC值,计算相对最小ADC值(rADC_(min))和相对平均ADC值(rADC_(mean))。比较LGG IDH-1突变型和IDH-1野生型组间各ADC值间差异,绘制受试者工作特征(receiver operating characteristic, ROC)曲线分析各ADC值对IDH-1突变状态的评估效能,并分析其与Ki-67增殖指数间的相关性。结果IDH-1突变型组的ADC_(min)、ADC_(mean)、rADC_(min)和rADC_(mean)值均高于IDH-1野生型组,组间差异具有统计学意义(P均<0.05)。ROC曲线结果显示各参数均能对IDH-1突变型和IDH-1野生型LGG进行有效区分,其中,rADC_(min)鉴别效能最佳,以0.978为最佳截止值,相应的曲线下面积(area under the curve, AUC)、敏感度、特异度、准确度、阳性预测值和阴性预测值分别为0.838、80.00%、83.33%、81.82%、80.00%和83.30%。LGG ADC_(min)、ADC_(mean)、rADC_(min)和rADC_(mean)与Ki-67增殖指数间均呈不同程度的负相关关系(r=-0.552、-0.590、-0.532、-0.579,P均<0.05)。结论ADC值可用于评估LGG IDH-1突变状态,对于肿瘤细胞增殖活性的评估也具有一定的价值。 |
其他语种文摘
|
Objective: To investigate the evaluation value of apparent diffusion coefficient(ADC)value in lower-grade gliomas(LGG) isocitrate dehydrogenase 1(IDH-1)mutation status and tumor cell proliferation activity. Materials and Methods: Forty-four patient cases with LGG were confirmed by pathology, and measured IDH-1 mutation status and the Ki-67 proliferation index was retrospectively analyzed, including 24 cases of IDH-1 mutant-type and 20 cases of IDH-1 wild-type. The minimum ADC value(ADC_(min)), mean ADC value(ADC_(mean))of the lesion parenchyma, and the ADC value of the contralateral mirror normal white matter on the ADC maps were measured, and the relative minimum ADC value(rADC_(min))and relative mean ADC value(rADC_(mean))were calculated. The differences in ADC values between the two groups were compared, and receiver operating characteristic(ROC)curves were drawn to evaluate the differential diagnostic efficacy. The Ki-67 proliferation index of the solid tumor components was also measured to explore its relationship with ADC values. Results: The ADC_(min), ADC_(mean), rADC_(min), and rADC_(mean) values in the IDH-1 mutant-type group were higher than those in the IDH-1 wild-type group, and the differences between the groups were statistically significant(all P<0.05). ROC results show that all parameters can effectively distinguish IDH-1 mutant-type and IDH-1 wild-type LGG. Among them, rADC_(min) has the best discrimination efficiency, and 0.978 is the best cut-off value, with area under the curve(AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value was 0.838, 80.00%, 83.33%, 81.82%, 80.00%, and 83.30%, respectively. ADC_(min), ADC_(mean), rADC_(min), rADC_(mean) and Ki-67 proliferation index showed different degrees of negative correlation(r=-0.552,-0.590,-0.532,-0.579, all P<0.05). Conclusions: ADC values can be used to evaluate LGG IDH-1 mutation status, and it also has a certain value for evaluating tumor cell proliferation activity. |
来源
|
磁共振成像
,2022,13(8):13-18 【核心库】
|
DOI
|
10.12015/issn.1674-8034.2022.08.003
|
关键词
|
脑胶质瘤
;
较低级别胶质瘤
;
异柠檬酸脱氢酶
;
Ki-67增殖指数
;
磁共振成像
;
表观扩散系数
|
地址
|
兰州大学第二医院放射科, 兰州大学第二临床医学院, 甘肃省医学影像重点实验室;;医学影像人工智能甘肃省国际科技合作基地, 兰州, 730030
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-8034 |
学科
|
临床医学;肿瘤学 |
基金
|
国家自然科学基金
;
甘肃省自然科学基金
;
甘肃省医学影像重点实验室开放基金
|
文献收藏号
|
CSCD:7270382
|
参考文献 共
32
共2页
|
1.
Ostrom Q T. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016.
Neuro Oncol,2019,21(Suppl 5):v1-v100
|
CSCD被引
61
次
|
|
|
|
2.
Chen J. An artificial neural network model based on DNA damage response genes to predict outcomes of lower-grade glioma patients.
Brief Bioinform,2021,22(6)
|
CSCD被引
1
次
|
|
|
|
3.
Louis D N. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.
Acta Neuropathol,2016,131(6):803-820
|
CSCD被引
517
次
|
|
|
|
4.
Fukuya Y. Tumor recurrence patterns after surgical resection of intracranial low-grade gliomas.
J Neurooncol,2019,144(3):519-528
|
CSCD被引
2
次
|
|
|
|
5.
Eckel-Passow J E. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors.
N Engl J Med,2015,372(26):2499-2508
|
CSCD被引
65
次
|
|
|
|
6.
Xu S. Immune-related genes with APA in microenvironment indicate risk stratification and clinical prognosis in grade II/III gliomas.
Mol Ther Nucleic Acids,2021,23:1229-1242
|
CSCD被引
1
次
|
|
|
|
7.
Han S. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets.
Br J Cancer,2020,122(11):1580-1589
|
CSCD被引
14
次
|
|
|
|
8.
Li Y. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status.
Magn Reson Imaging,2021,78:18-24
|
CSCD被引
11
次
|
|
|
|
9.
Liu X W. Apparent Diffusion Coefficient to Evaluate Adult Intracranial Ependymomas: Relationship to Ki-67 Proliferation Index.
J Neuroimaging,2021,31(1):132-136
|
CSCD被引
2
次
|
|
|
|
10.
Ke X A. Differentiating microcystic meningioma from atypical meningioma using diffusion-weighted imaging.
Neuroradiology,2020,62(5):601-607
|
CSCD被引
6
次
|
|
|
|
11.
刘泽亮. 磁共振扩散成像在脑胶质瘤预后预测的研究进展.
磁共振成像,2021,12(1):77-80
|
CSCD被引
4
次
|
|
|
|
12.
Zhao J. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status.
J Neurooncol,2019,141(1):195-203
|
CSCD被引
17
次
|
|
|
|
13.
Henker C. Correlation of Ki-67 Index with Volumetric Segmentation and its Value as a Prognostic Marker in Glioblastoma.
World Neurosurg,2019:125
|
CSCD被引
1
次
|
|
|
|
14.
闫新亭. 磁共振扩散加权成像在脑胶质瘤的研究进展.
医学影像学杂志,2021,31(9):1586-1589
|
CSCD被引
2
次
|
|
|
|
15.
Bai Y. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging.
Radiology,2016,278(2):496-504
|
CSCD被引
44
次
|
|
|
|
16.
Li S. The relationship between the apparent diffusion coefficient and the Ki-67 proliferation index in intracranial solitary fibrous tumor/hemangiopericytoma.
Neurosurg Rev,2022,45(2):1625-1633
|
CSCD被引
3
次
|
|
|
|
17.
Xue C. Apparent Diffusion Coefficient Histogram Analysis for the Preoperative Evaluation of Ki-67 Expression in Pituitary Macroadenoma.
Clin Neuroradiol,2022,32(1):269-276
|
CSCD被引
5
次
|
|
|
|
18.
Liu X. Differentiation of intracranial solitary fibrous tumor/hemangiopericytoma from atypical meningioma using apparent diffusion coefficient histogram analysis.
Neurosurg Rev,2022,45(3):2449-2456
|
CSCD被引
6
次
|
|
|
|
19.
Gihr G A. Histogram Analysis of Diffusion Weighted Imaging in Low-Grade Gliomas: in vivo Characterization of Tumor Architecture and Corresponding Neuropathology.
Front Oncol,2020:10
|
CSCD被引
2
次
|
|
|
|
20.
蒋健. 胶质瘤异柠檬酸脱氢酶基因型与影像学研究进展.
磁共振成像,2021,12(5):103-106
|
CSCD被引
5
次
|
|
|
|
|