导电性生物炭促进Geobacter和Methanosarcina共培养体系互营产甲烷过程
Conductive Biochar Stimulates Acetate Conversion to Methane by Syntrophic Interaction between Geobacter and Methanosarcina
查看参考文献37篇
文摘
|
近年来研究发现互营氧化产甲烷过程中存在种间直接电子传递(direct interspecies electron transfer,DIET),这种电子传递方式比传统的种间氢转移或种间甲酸转移更为高效。导电生物炭作为导电介质,可以有效促进DIET介导的互营产甲烷进程。乙酸作为有机物厌氧降解的重要中间产物,其降解过程是否存在DIET途径尚不清楚,导电生物炭对乙酸互营降解产甲烷过程的影响机制也未有研究报道。以具有DIET功能的Geobacter sulfurreducens和Methanosarcina barkeri菌株为研究对象,构建共培养体系,以乙酸为电子供体,比较添加不同导电性生物炭共培养体系的甲烷产生和微生物生长情况。结果表明: (1)导电性生物炭处理的产甲烷速率为0.015~0.017 mmol·d~(-1),显著高于对照处理的0.012 mmol·d~(-1);而不导电生物炭处理的产甲烷速率低于对照处理。说明导电性生物炭促进共培养体系中的产甲烷过程,而不具导电性的生物炭没有促进效应;(2)导电性生物炭存在时,共培养体系的甲烷产生速率(0.008 mmol·d~(-1))和产量(0.14 mmol)明显高于Methanosarcina barkeri单菌体系的产甲烷速率(0.006 mmol·d~(-1))和产甲烷量(0.09 mmol),而添加不导电生物炭的共培养体系和单菌体系的甲烷产生速率和产量无明显差异。以上结果表明,导电性生物炭能介导Geobacter sulfurreducens和Methanosarcina barkeri之间的直接电子传递,即Geobacter sulfurreducens氧化乙酸产生的电子,以导电生物炭为导电通道直接传递至Methanosarcina barkeri还原CO_2产生甲烷,从而促进乙酸互营氧化产甲烷过程。本研究结果有助于我们理解种间直接电子传递对互营产甲烷过程的贡献及影响效应,为研究甲烷产生的微生物机制提供新的研究思路。 |
其他语种文摘
|
In recent years, studies have found that direct interspecies electron transfer (DIET) is a more effective alternative to interspecies hydrogen/formate transfer that occurs in syntrophic methanogenesis. As a conductive medium, conductive biochar can effectively promote DIET-mediated syntrophic methanogensis. Acetate is an important intermediate in the methanogenic degradation of organic matter, however, the possibility of DIET involvement in acetate conversion to methane remains unknown, the mechanism of impact of conductive biochar on acetate-degrading methanogenic process has not been studied yet either. Herein, we investigated the potential of DIET to stimulate methanogenesis in a co-culture of Geobacter sulfurreducens and Methanosarcina barkeri with acetate as the only substrate. The data showed that the methane production rates from conductive biocar amended treatments were 0.015~0.017 mmol·d~(-1) which were significantly higher than those of control with methane production rates 0.008 mmol·d~(-1). The methane production rate and the cumulative amount in cocultures treated with conductive biochar were 0.008 mmol·d~(-1) and 0.14 mmol, respectively, which obviously higher than the cultures of M. barkeri without G. sulfurreducens. Results demonstrated that conductive biochar promotes methanogenesis in co-culture systems, non-conductive biochar has no promoting effect; the methane production rate and yield of the co-culture system with conductive biochar were significantly higher than that of Methanosarcina barkeri, while the co-culture system and single bacteria system of non-conductive biochar had no significant difference in methane production rate and yield. These results suggest that conductive biochar can work as a conductive channel to mediate the direct electron transfer between Geobacter sulfurreducens and Methanosarcina barkeri, in which electrons released from acetate oxidation by Geobacter sulfurreducens are transferred through conductive biochar to Methanosarcina barkeri for CO_2 reduction, thereby the process of acetate oxidation to methane production was promoted. This study will help us to understand the contribution and impact of interspecies direct electron transfer to syntrophic methane production process, and provide new research ideas for the study of the microbial mechanism of methane production. |
来源
|
生态环境学报
,2018,27(7):1260-1268 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2018.07.009
|
关键词
|
互营产甲烷
;
乙酸降解
;
种间直接电子传递
;
导电性生物炭
|
地址
|
1.
中国科学院广州地球化学研究所, 广东, 广州, 510640
2.
中国科学院大学, 北京, 100039
3.
广东省生态环境技术研究所, 广东, 广州, 510650
4.
厦门市环境科学研究院, 福建, 厦门, 361006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金项目
;
广东省自然科学基金
|
文献收藏号
|
CSCD:6293298
|
参考文献 共
37
共2页
|
1.
Beesley L. A review of biochars’potential role in the remediation, revegetation and restoration of contaminated soils.
Environ Pollut,2011,159(12):3269-3282
|
CSCD被引
160
次
|
|
|
|
2.
Bryant M P. Emended Description of Strain MST (DSM 800T), the Type Strain of Methanosarcina barkeri.
International Journal of Systematic Bacteriology,1987,37(2):169-170
|
CSCD被引
1
次
|
|
|
|
3.
Butler J E. Evolution from a respiratory ancestor to fill syntrophic and fermenta-tive niches: comparative fenomics of six Geobacteraceae species.
BMC Genomics,2009,10:103
|
CSCD被引
1
次
|
|
|
|
4.
Chen S. Carbon cloth stimulates direct interspecies electron transfer in syntrophic cocultures.
Bioresour Techol,2014,173:82-86
|
CSCD被引
16
次
|
|
|
|
5.
Chen S. Promoting interspecies electron transfer with biochar.
Scientific Reports,2014,4:5019
|
CSCD被引
25
次
|
|
|
|
6.
Coppi M V. Development of a genetic system for geobacter sulfurreducens.
Applied & Environmental Microbiology,2001,67(7):3180-3187
|
CSCD被引
14
次
|
|
|
|
7.
Cord-Ruwisch R. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners.
Appl Environ Microbiol,1998,64(6):2232-2236
|
CSCD被引
7
次
|
|
|
|
8.
Hori T. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing.
Isme Journal,2010,42(2):267-278
|
CSCD被引
31
次
|
|
|
|
9.
Hori T. Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA.
Appl Environ Microbiol,2007,73(1):101-109
|
CSCD被引
7
次
|
|
|
|
10.
Kato S. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals.
Environ Microbiol,2012,14(7):1646-1654
|
CSCD被引
60
次
|
|
|
|
11.
Kato S. Microbial interspecies electron transfer via electric currents through conductive minerals.
Proceedings of the National Academy of Science of the United States of America,2012,109(25):10042-10046
|
CSCD被引
45
次
|
|
|
|
12.
Liu F. Promoting direct interspecies electron transfer with activated carbon.
Energy & Environmental Science,2012,5(10):8982-8989
|
CSCD被引
30
次
|
|
|
|
13.
Liu F. Magnetite compensates for the lack of a pilin-assoicated c-type cytochrome in extracellular electron exchange.
Environmental Microbiology,2015,17(3):648-655
|
CSCD被引
21
次
|
|
|
|
14.
Lovley D R. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination.
Energy & Environmental Science,2011,4(12):4896-4906
|
CSCD被引
33
次
|
|
|
|
15.
Lovley D R. Powering microbes with electricity: direct electron transfer from electrodes to microbes.
Environmental Microbiology Reports,2011,3(1):27-35
|
CSCD被引
17
次
|
|
|
|
16.
Lovley D R. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy.
Reviews in Environmental Science and Bio/Technology,2011,10(2):101-105
|
CSCD被引
4
次
|
|
|
|
17.
Lovley D R. Happy together: microbial communities that hook up to swap electrons.
Isme Journal,2017,11(2):327-336
|
CSCD被引
19
次
|
|
|
|
18.
Lovley D R. Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
Annual Review of Microbiology,2017,71(1):643-664
|
CSCD被引
35
次
|
|
|
|
19.
Mcglynn S E. Single cell activity reveals direct electron transfer in methanotrophic consortia.
Nature,2015,526:531-535
|
CSCD被引
39
次
|
|
|
|
20.
Mochidzuki K. Electrical and physical properties of carbonized charcoals.
Industrial & Engineering Chemistry Research,2003,42(21):5140-5151
|
CSCD被引
4
次
|
|
|
|
|