上荆江枯水位对河床冲刷及水库调度的综合响应
Response of low water level change to bed erosion and the operation of Three Gorges Reservoir in upper Jingjiang reach
查看参考文献20篇
文摘
|
为系统揭示长江中游近期枯水情势及其对三峡水库蓄水的直接和间接响应,本文以冲刷剧烈、枯水位降幅最大的上荆江为例,通过统计其不同形式枯水位的变化特征,建立了水位下降与河床冲刷、水库不同运行方式的相关关系。结果表明,沙市站同流量枯水位几乎与枯水河槽河床平均高程等幅下降,枝城站枯水位下降幅度较小与本底河床形态、河床粗化及航道整治工程有关。上荆江汛前枯水位降幅、最低水位及极枯水位历时等枯水情势会受到三峡水库补水调度的影响,这种补水效应沿程递减,至沙市站补水调度仍然无法抵消河床下切对枯水位造成的影响。 |
其他语种文摘
|
The upper Jingjiang reach, which is located at the beginning of sandy channel downstream from the Three Gorges Reservoir (TGR), is undergoing continuous erosion. As a response to riverbed erosion, there has been an obvious water level drop during the dry seasons in the past decades. And this phenomenon has drawn much attention because of its close connections with irrigation, navigation, water environment, dike safety, and so on. In this article, by using the reorganized data of the gauging stations, elaborate efforts were made to examine the characteristics of the low water level in upper Jingjiang reach, including the variations in the same discharge, the same stage and the annual minimum. Besides, the impacts of the TGR operation in dry seasons were also analyzed. This operation mainly refers to the increase of the water release from TGR when its water level almost reached 175 m, which was to ease the drought- prone downstream since 2009. The results show that: (1)the drop of the water level in the discharge of 7000 m~3/s were 0.59 m and 1.64 m at Zhicheng and Shashi gauging stations from 2003 to 2015, respectively. On the contrary, the lowest water level has been raised, and the duration of extremely low water level has been reduced since the impoundment of TGR; (2)The drop of low water level was evidently affected by the river bed erosion at Shashi gauging station. The drop of its low water level and the erosion of the nearly river bed were found to be of almost the equal magnitude. However, a smaller drop of low water level at Zhicheng gauging station has arisen, under the comprehensive influences of channel morphology, river bed armoring and channel regulation works; (3)The compensation operation of TGR in dry seasons can raise the monthly-averaged water level from January to April by increasing its water release. In addition, the annual lowest water level was raised, and the extremely low water level duration has been reduced. However, such compensation still cannot eliminate the impact of river bed erosion at Shashi station, even if the compensating discharge reached 2000 m~3/s. |
来源
|
地理学报
,2017,72(7):1184-1194 【核心库】
|
DOI
|
10.11821/dlxb201707005
|
关键词
|
上荆江
;
同流量枯水位
;
枯期水位
;
年最枯水位
;
枯期补水调度
|
地址
|
1.
长江水利委员会水文局, 武汉, 430010
2.
中国长江三峡集团公司三峡枢纽建设运行管理局, 宜昌, 443133
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
水利工程 |
基金
|
国家重点研发计划
;
水利部公益性行业科研专项
;
国家科技支撑计划项目
|
文献收藏号
|
CSCD:6029159
|
参考文献 共
20
共1页
|
1.
Saad M B A.
Nile River morphology changes due to the construction of High Aswan Dam in Egypt,2002
|
CSCD被引
1
次
|
|
|
|
2.
Pinter Nicolae. Hydrodynamic and morph dynamic response to river engineering documented by fixeddischarge analysis, Lower Missouri River, USA.
Journal of Hydrology,2005,302(1):70-91
|
CSCD被引
10
次
|
|
|
|
3.
Williams G P.
Downstream effects of dams on alluvial rivers, U.S. Geological Survey Professional Paper,1984:1286,38
|
CSCD被引
1
次
|
|
|
|
4.
孙昭华. 长江中游宜昌~沙市段河床冲淤与枯水位变化.
水利水运工程学报,2007(4):14-20
|
CSCD被引
9
次
|
|
|
|
5.
江凌. 三峡工程蓄水后荆江沙质河段河床演变及对航道的影响.
应用基础与工程科学学报,2010,18(1):1-10
|
CSCD被引
19
次
|
|
|
|
6.
陈飞. 三峡蓄水初期坝下沙卵石河段航道条件分析.
水力发电学报,2012,31(5):127-132
|
CSCD被引
5
次
|
|
|
|
7.
朱玲玲. 三峡蓄水后枝江-江口水道演变趋势初步分析.
泥沙研究,2009(2):8-15
|
CSCD被引
4
次
|
|
|
|
8.
Chen Zhongyuan. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the Middle Yangtze (Changjiang) River, China.
Geology,2010,38(11):1043-1046
|
CSCD被引
9
次
|
|
|
|
9.
孙昭华. 三峡近坝段枯水位降幅的时空分异性及成因.
应用基础与工程科学学报,2015,23(4):694-704
|
CSCD被引
9
次
|
|
|
|
10.
长江科学院. 三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二).
长江三峡工程泥沙问题研究(第七卷),2002:258-311
|
CSCD被引
10
次
|
|
|
|
11.
中国水利水电科学研究院. 三峡水库下游河道冲淤计算研究.
长江三峡工程泥沙问题研究(第七卷),2002:149-210
|
CSCD被引
11
次
|
|
|
|
12.
许全喜. 三峡工程蓄水运用前后长江中下游干流河道冲淤规律研究.
水力发电学报,2013,32(2):146-154
|
CSCD被引
46
次
|
|
|
|
13.
韩剑桥. 三峡水库蓄水后宜昌至城陵矶河段枯水位变化及成因.
武汉大学学报(工学版),2011,44(6):685-690
|
CSCD被引
8
次
|
|
|
|
14.
黄悦. 三峡水库运用对坝下游干流河道水文情势的影响研究.
长江科学院院报,2011,28(7):76-81
|
CSCD被引
4
次
|
|
|
|
15.
夏军强. 三峡工程运用后荆江河段平滩河槽形态调整特点.
浙江大学学报(工学版),2015,49(2):238-245
|
CSCD被引
17
次
|
|
|
|
16.
赖锡军. 三峡工程蓄水对鄱阳湖水情的影响格局及作用机制分析.
水力发电学报,2012,31(6):132-148
|
CSCD被引
21
次
|
|
|
|
17.
Zhang Q. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier?.
Geophysical Research Letters,2012,39:L20402
|
CSCD被引
22
次
|
|
|
|
18.
Ou Chaoming. Evolution characters of water exchange abilities between Dongting Lake and Yangtze River.
Journal of Geographical Sciences,2014,24(4):731-745
|
CSCD被引
1
次
|
|
|
|
19.
陶家元. 荆江裁弯工程对荆江和洞庭湖的影响.
华中师范大学学报(自然科学版),1989,23(2):263-267
|
CSCD被引
5
次
|
|
|
|
20.
李义天. 葛洲坝下游局部卡口对宜昌枯水水位影响的初步分析.
应用基础与工程科学学报,2007,15(4):435-444
|
CSCD被引
14
次
|
|
|
|
|