激光雷达遥感地表气溶胶消光吸湿因子及其对波长的依赖特性
Remote Sensing Aerosol Extinction Hygroscopic Growth Factor and Its Wavelength Dependence Using Lidar
查看参考文献32篇
文摘
|
介绍了一种在开放大气环境下、利用水平探测的双波长-偏振米氏散射激光雷达遥感地表气溶胶消光吸湿增长因子的新方法。在激光雷达垂直观测气溶胶吸湿性质相关研究报道的数据筛选方法的基础上,利用消光系数与实测相对湿度(RH)之间的强相关性,以及实测的粒子质量浓度和粒子退偏振比的变化规律作为判据,说明吸湿增长作用是引起地表气溶胶消光系数增大的主要原因。相比于激光雷达垂直方法观测气溶胶吸湿性质,该筛选过程更加严格地约束了激光雷达水平观测吸湿性质的筛选判据,且对气象条件的约束相对简单。利用筛选得到的有效数据,计算得到气溶胶消光吸湿增长因子,并分析其对波长的依赖特性。观测结果表明,在开放大气条件下,合肥地区粒子谱分布可能会出现单模态、双模态甚至多模态的复杂情况,导致Angstrom波长指数与相对湿度之间的变化规律表现为正相关、负相关和不相关3种结果;同样也导致短波的气溶胶消光吸湿增长因子弱于、等于或强于长波的气溶胶消光吸湿增长因子的多样性现象。 |
其他语种文摘
|
A new method of using two-wavelength Mie-depolarization lidar for remote sensing extinction hygroscopic growth factor of aerosol near ground layer under varying conditions of relative humidity(RH)is proposed.Based on the algorithm used in lidar vertical aerosol hygroscopic growth observations,lidar horizontal measurements data is researched using strong correlation between extinction coefficient and RH,and the measured particle mass concentration going along with the decrease of depolarization ratio is used as a criterion,which proves that the hygroscopic effect of aerosol is the main cause of the extinction coefficient increment.Compared to the lidar vertical aerosol hygroscopic growth observations method,the proposed method has the advantage of the raising data selection criterion and simple meteorological conditions.Extinction hygroscopic growth factor can be calculated using valid data in lidar database,and its wavelength dependence is analyzed.Observation results at Hefei district show that,in various natural atmospheric environments,unimodal,bimodal and even multimodal aerosol distributions may exist.As a result,positive correlation,negative correlation and irrelevance between RH and Angstrom exponent can be observed,and hygroscopic growth factor at short wavelength can be weaker than,stronger than or equal with that at long wavelength. |
来源
|
光学学报
,2016,36(6):0601003-1-0601003-9 【核心库】
|
DOI
|
10.3788/AOS201636.0601003
|
关键词
|
大气光学
;
气溶胶
;
激光雷达
;
消光系数
;
Angstrom波长指数
;
吸湿增长因子
;
波长依赖特性
|
地址
|
1.
中国科学院合肥物质科学研究院合肥技术创新工程院, 安徽, 合肥, 230031
2.
中国科学院合肥物质科学研究院医学物理与技术中心, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
2014年度中国气象局大气探测重点开放实验室开放课题
|
文献收藏号
|
CSCD:5735038
|
参考文献 共
32
共2页
|
1.
Gasparini R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol.
Atmospheric Environment,2004,38(20):3285-3303
|
CSCD被引
19
次
|
|
|
|
2.
Robert A. Humidification factors for atmospheric aerosol off the mid-Atlantic coast of united states.
J Geophys Res,1999,104(2):2239-2251
|
CSCD被引
1
次
|
|
|
|
3.
刘新罡. 大气气溶胶吸湿性质国内外研究进展.
气候与环境研究,2010,15(6):808-816
|
CSCD被引
29
次
|
|
|
|
4.
Pahlow M. Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the southern great plains atmospheric radiation measurement site.
J Geophys Res,2006,111(5):237-253
|
CSCD被引
2
次
|
|
|
|
5.
Graham Feingold. Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements.
J Geophys Res,2003,108(D11):AAC1
|
CSCD被引
1
次
|
|
|
|
6.
Massoli P. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing.
J Geophys Res,2009,114(D7):D00F07
|
CSCD被引
2
次
|
|
|
|
7.
陶金花. 北京地区颗粒物质量消光吸湿增长模型研究.
遥感学报,2015,19(1):12-24
|
CSCD被引
18
次
|
|
|
|
8.
Wang Z. Satellite-based estimation of regional particulate matter(PM)in Beijing using vertical and RH correcting method.
Remote Sens Environ,2010,114(1):50-63
|
CSCD被引
75
次
|
|
|
|
9.
Wang Zifeng. An empirical method of RH correction for satellite estimation of ground-level PM concentrations.
Atmospheric Environment,2014,95:71-81
|
CSCD被引
3
次
|
|
|
|
10.
Wang J. Satellite characterization of urban aerosols:Importance of including hygroscopicity and mixing state in the retrieval algorithms.
J Geophys Res,2007,112(D17):D17203
|
CSCD被引
6
次
|
|
|
|
11.
Hanel G. The properties of atmospheric aerosol particles as functions of the RH at thermodynamic equilibrium with the surrounding moist air.
Advances in Geophysics,1976,19:73-188
|
CSCD被引
14
次
|
|
|
|
12.
Mackinnon D J. The effect of hygroscopic particles on the backscattered power from a laser beam.
J Atmos Sci,1969,26(3):500-510
|
CSCD被引
1
次
|
|
|
|
13.
Hand J L. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990.
J Geophys Res,2007,112(D16):D16203
|
CSCD被引
12
次
|
|
|
|
14.
Titos G. Study of the relative humidity dependence of aerosol light-scattering in southern Spain.
Tellus B,2014,66(8):136-140
|
CSCD被引
3
次
|
|
|
|
15.
Liu Xingang. Increase of aerosol scattering by hygroscopic growth:Observation, modeling,and implications on visibility.
Atmospheric Research,2013,132/133:91-101
|
CSCD被引
18
次
|
|
|
|
16.
Pan X L. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city.
Atmospheric Chemistry and Physics,2009,9(19):7519-7530
|
CSCD被引
40
次
|
|
|
|
17.
Jung J. Optical and hygroscopic properties of long-range transported haze plumes observed at Deokjeok Island off the west coast of the Korean Peninsula under the Asian continental outflows.
J Geophys Res,2015,120(17):8861-8877
|
CSCD被引
1
次
|
|
|
|
18.
Fernandez A J. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research(CESAR)using the multi-wavelength Raman lidar Caeli.
Atmospheric Environment,2015,120:484-498
|
CSCD被引
1
次
|
|
|
|
19.
Wulfmeyer V. On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar.
J Geophys Res Atmos,2000,105(D4):4729-4741
|
CSCD被引
1
次
|
|
|
|
20.
Granados-Munoz M J. Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radio sounding measurements:Selected cases in southeastern Spain.
Atmos Meas Tech,2015,8:705-718
|
CSCD被引
2
次
|
|
|
|
|