基于类圆映射的高维多目标可视化方法
The Quasi-Circular Mapping Visualization for Many-Objective
查看参考文献22篇
文摘
|
可视化技术有利于对高维多目标优化问题求解所得的解集进行评价与分析,但是现有的高维多目标可视化方法无法有效保持解集的Pareto支配关系、前沿密度分布及形状。针对以上问题,本文提出类圆映射可视化方法.首先将多目标按相关性均匀排列在单位圆圆弧上,根据适应度函数值将解集映射为类圆空间内的一个多边形,并通过多边形的几何中心和面积对解集进行3维可视化.在此基础上对类圆支配与均衡性进行了定义,并对类圆映射下的支配关系、映射遮挡等进行了理论分析与证明.与平行坐标系、主成分分析方法和径向可视化方法相比表明,本文方法能保持解集Pareto支配关系,并能反映解集在原始空间的密度分布和形状。此外,还能有效避免解集映射点遮档.其有利于决策者进行可视化评价和选择高维多目标解集. |
其他语种文摘
|
Visualization technology is conducive to the evaluation and analysis of the solution sets obtained by solving many-objective optimization problem,but the existing many-objective visualization technology cannot effectively preserve Pareto dominance relation,maintain frontier distribution and retain shape. To solve the above problems, this paper presents quasi-circular mapping visualization. Many-objective are uniformly distributed in order on a unit arc according to their correlation. Based on the fitness function value, the solution sets are mapped into a polygon in quasi-circular space. So 3 dimensional visualization of the solution set is achieved through the geometric center and area of polygons. On the basis of this, the quasi-circular domination and equilibrium are defined. The dominance relation and mapping occlusion under quasi-circular mapping are theoretically analyzed and proved. Compared with parallel coordinates,principal component analysis and radial visualization, this method can preserve the Pareto dominance. In addition, it can also reflect frontier distribution and shape in the original space and effectively avoid data blocking. It helps decision makers to evaluate and select many-objective solution sets visually. |
来源
|
电子学报
,2019,47(6):1185-1193 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.06.001
|
关键词
|
多目标优化问题
;
可视化技术
;
高维多目标可视化
;
类圆映射
;
Pareto支配
;
Pareto前沿形状
|
地址
|
1.
南昌航空大学信息工程学院, 江西, 南昌, 330063
2.
南昌航空大学, 江西省图像处理与模式识别重点实验室, 江西, 南昌, 330063
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
江西省创新驱动“5511”工程优势学科创新团队
;
江西省科技厅项目
;
江西省研究生创新专项基金
|
文献收藏号
|
CSCD:6668542
|
参考文献 共
22
共2页
|
1.
张勇. 高超声速飞行器控制一体化设计.
航空动力学报,2012,27(12):2724-2732
|
CSCD被引
6
次
|
|
|
|
2.
Deb K. An evolutionary many-objective optimization algorithm using reference-point-Based nondominated sorting approach,part I: solving problems with box constraints.
IEEE Transactions on Evolutionary Computation,2014,18(4):577-601
|
CSCD被引
457
次
|
|
|
|
3.
Cheng R. A reference vector guided evolutionary algorithmfor many-objective optimization.
IEEE Transactions on Evolutionary Computation,2016,20(5):773-791
|
CSCD被引
102
次
|
|
|
|
4.
Cheung Y. Objective extraction for many-objective optimization problems: algorithm and test problems.
IEEE Transactions on Evolutionary Computation,2016,20(5):755-772
|
CSCD被引
5
次
|
|
|
|
5.
毕晓君. 基于模糊支配的高维多目标进化算法MFEA.
电子学报,2014,42(8):1653-1659
|
CSCD被引
11
次
|
|
|
|
6.
孔维健. 高维多目标进化算法研究综述.
控制与决策,2010,25(3):321-326
|
CSCD被引
32
次
|
|
|
|
7.
He Z. Visualization and performance metric in many-objective optimization.
IEEE Transactions on Evolutionary Computation,2016,20(3):386-402
|
CSCD被引
4
次
|
|
|
|
8.
毕晓君. 基于特征解选取的高维多目标可视化研究.
哈尔滨工程大学学报,2013,34(9):1179-1187
|
CSCD被引
2
次
|
|
|
|
9.
Zhen L. Adjustingparallel coordinates for investigating multi-objective search.
Asia-Pacific Conference on Simulated Evolution and Learning,2017:224-235
|
CSCD被引
1
次
|
|
|
|
10.
Gu Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data.
Bioinformatics,2016,32(18):2847-2849
|
CSCD被引
67
次
|
|
|
|
11.
Urquhart N. Combining parallel coordinates with multi-objective evolutionary algorithms in a real-world optimisation problem.
Proceedings of the Genetic and Evolutionary Computation Conference Companion,2017:1335-1340
|
CSCD被引
1
次
|
|
|
|
12.
Walker D J. Visualizing mutually nondominating solution sets in many-objective optimization.
IEEE Transactions on Evolutionary Computation,2013,17(2):165-184
|
CSCD被引
6
次
|
|
|
|
13.
陈小红. 高维多目标优化中基于稀疏特征选择的目标降维方法.
电子学报,2015,43(7):1300-1307
|
CSCD被引
10
次
|
|
|
|
14.
Astel A. PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre,mossexposed in the Gdansk city area.
Environmental Science & Pollution Research International,2008,15(1):41-50
|
CSCD被引
2
次
|
|
|
|
15.
Caro L D. Analyzing the role of dimension arrangement for data visualization in RadViz.
Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,2010:125-132
|
CSCD被引
1
次
|
|
|
|
16.
Xu C. A novel PCA-based microstructure descriptor for heterogeneous material design.
Computational Materials Science,2017,130:39-49
|
CSCD被引
2
次
|
|
|
|
17.
Wang Y C. Histogram equalization and specification for high-dimensionaldata visualization using RadViz.
Computer Graphics International Conference,2017:15-20
|
CSCD被引
1
次
|
|
|
|
18.
Ke L. MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and Ant-Colony.
IEEE Transactions on Cybernetics,2013,43(6):1845-1859
|
CSCD被引
11
次
|
|
|
|
19.
Kaveh A. Finite element mesh decomposition using complementary Laplacian matrix.
Communications in Numerical Methods in Engineering,2000,16(6):379-389
|
CSCD被引
1
次
|
|
|
|
20.
Tusar T. Visualization of Pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method.
Evolutionary Computation IEEE Transactions on,2015,19(2):225-245
|
CSCD被引
3
次
|
|
|
|
|