混凝土损伤识别中的时间逆转成像方法
Application of Time Reversal Imaging Method on Concrete Structural Damage Identification
查看参考文献11篇
文摘
|
时间逆转成像技术具有定位准确和操作简单之特点,本文将其运用于混凝土结构损伤的检测.通过提取各换能器单元的发射信号和损伤散射信号构建超声波传播的传递矩阵然后对其进行奇异值分解,获得包含损伤信息的奇异向量;采用多重信号分类(multiple signal classification, MUSIC)算法,分别基于数值模拟数据和实验实测数据对混凝土结构内部损伤进行成像,实现了准确的损伤定位,并将成像结果与偏移成像法进行对比.此工作探索了将时间逆转成像技术应用于混凝土结构内部损伤实际工程检测可行性,为无损检测技术人员定性或定量分析混凝土结构的内部缺陷提供理论参考. |
其他语种文摘
|
The time reversal imaging technology has the merits of accurate positioning and simple operation, in this paper it had been applied to the detection of damage of concrete structures. The transfer matrix of ultrasonic transmission was constructed by extracting transmitted signals from transducer arrays and scattered signals from damages, and then it underwent singular value decomposition and the singular vectors containing information about the damage were obtained. The damages of concrete structure were imaged by MUSIC (multiple signal classification) algorithm based on the data from simulations and experiments respectively, a precise positioning of damage was obtained, and a comparison with the result from migration imaging was made. This work explored the feasibility of employing the time reversal imaging technology to detect the internal damage of concrete structures in real situation. It also provided a theoretical reference for nondestructive testing engineers to analyze the internal defects of concrete structures qualitatively or quantitatively. |
来源
|
力学季刊
,2015,36(4):655-661 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2015.04.012
|
关键词
|
混凝土
;
时间逆转成像
;
数值计算
;
奇异值分解
;
偏移成像
|
地址
|
1.
江苏大学土木工程与力学学院, 江苏, 镇江, 212013
2.
江苏大学理学院, 江苏, 镇江, 212013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
国家教育部高等学校博士学科点专项科研基金
|
文献收藏号
|
CSCD:5596184
|
参考文献 共
11
共1页
|
1.
李勇攀. 超声反射纵波法检测钢轨应力的实验研究.
力学季刊,2008,29(2):291-295
|
CSCD被引
2
次
|
|
|
|
2.
Krause M. Comparison of pulse-echo methods for testing concrete.
NDT & E International,1997,30(4):195-204
|
CSCD被引
1
次
|
|
|
|
3.
骆英. 混凝土损伤识别中的叠加偏移成像技术.
无损检测,2008,12:881-884
|
CSCD被引
2
次
|
|
|
|
4.
Wang Z. Focusing modeling of OPFC linear array transducer by using distributed point source method.
Abstract & Applied Analysis,2014,20(1):123-148
|
CSCD被引
1
次
|
|
|
|
5.
Fink M. Time reversal of ultrasonic fields. I. Basic principles.
IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,1992,39(5):555-566
|
CSCD被引
81
次
|
|
|
|
6.
Prada C. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers.
The Journal of the Acoustical Society of America,1996,99(4):2067-2076
|
CSCD被引
25
次
|
|
|
|
7.
Lehman S K. Transmission mode time-reversal super-resolution imaging.
The Journal of the Acoustical Society of America,2003,113(5):2742-2753
|
CSCD被引
4
次
|
|
|
|
8.
Liu S T. Defect imaging using time-reversal technique.
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems,2011,7981(4):765-768
|
CSCD被引
1
次
|
|
|
|
9.
Newton R G.
Scattering theory of waves and particles. 2nd Edition,2013
|
CSCD被引
1
次
|
|
|
|
10.
Devaney A J.
Mathematical foundations of imaging, tomography and wavefield inversion,2012
|
CSCD被引
2
次
|
|
|
|
11.
Luo Y. Experimental damage identification in concrete structure using stack migration imaging technology.
Journal of Advanced Concrete Technology,2012,10(1):41-46
|
CSCD被引
2
次
|
|
|
|
|