代谢组学-植物病理学研究有力的生物分析工具
Metabolomics - a robust bioanalytical approach for phytopathology
查看参考文献68篇
文摘
|
代谢组学与基因组学、转录组学、蛋白组学共同构成系统生物学。代谢组学作为连接基因、蛋白与表型的重要桥梁,正逐步被应用于植物病理学研究的各领域。本文系统综述了代谢组学在植物侵染性病害的病原学、病害诊断、病原与寄主互作、植物抗病性、植物非侵染性病害和杀菌剂作用机制等领域应用的最新进展。将为采用代谢组学手段深入揭示生物或非生物因素作用下植物病害的发生规律、植物自身的防御机制以及外源药物的防病机理提供有益借鉴。代谢组学将通过解析生物标志物或代谢途径为生物表型相关蛋白功能的研究提供重要参考。 |
其他语种文摘
|
Metabolomics,genomics,transcriptomics and proteomics compose systems biology. Metabolomics is a bridge to link genes,proteins,and phenotype and thus far,it is gradually applied in the field of phytopathology. In this review,we summarized recent applications of metabolomics in different aspects of phytopathology, such as etiology,disease diagnosis,plant-microbe interaction,disease resistance of plant,noninfectious disease and modes-of-action of fungicides. It will hopefully offer reference for gaining deep insight of occurrence regularity of plant disease,immune defense of plants,and suppression mechanism of exogenous agrochemicals to pathogens through application of metabolomics. In addition,by discovering biomarkers and metabolic pathways, metabolomics will offer important reference for understanding of proteins function. |
来源
|
植物病理学报
,2018,48(4):433-444 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000228
|
关键词
|
代谢组学
;
植物病理学
;
生物标志物
;
代谢途径
|
地址
|
中国农业大学植物保护学院植物病理学系, 农业部作物有害生物监测与绿色防控重点实验室, 北京, 100193
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家自然科学基金
;
国家重点研发计划
|
文献收藏号
|
CSCD:6371078
|
参考文献 共
68
共4页
|
1.
Aliferis K A. Metabolomics-A robust bioanalytical approach for the discovery of the modes-of action of pesticides: A review.
Pesticide Biochemistry and Physiology,2011,100(2):105-117
|
CSCD被引
3
次
|
|
|
|
2.
Jeremy K N. Metabonomics: a platform for studying drug toxicity and gene function.
Nature Reviews Drug Discovery,2002,1(2):153-161
|
CSCD被引
275
次
|
|
|
|
3.
Fiehn O. Metabolite profiling for plant functional genomics.
Nature Biotechnology,2000,18:1157-1161
|
CSCD被引
144
次
|
|
|
|
4.
Taylor J. Application of metabolomics to plant genotype discrimination using statistics and machine learning.
Bioinformatics,2002,18(suppl_2):S241-S248
|
CSCD被引
86
次
|
|
|
|
5.
Choi Y H. NMR metabolomics to revisit the Tobacco mosaic virus infection in Nicotiana tabacum leaves.
Journal of Natural Product,2006,69(5):742-748
|
CSCD被引
9
次
|
|
|
|
6.
Fernie A R. Review: Metabolome characterisation in plant system analysis.
Functional Plant Biology,2003,30(1):111-120
|
CSCD被引
2
次
|
|
|
|
7.
Houshyani B. Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance.
Metabolomics,2012,8(1):131-145
|
CSCD被引
3
次
|
|
|
|
8.
Uawisetwathana U. Quantitative ~1H NMR metabolome profiling of Thai Jasmine rice (Oryza sativa) reveals primary metabolic response during brown planthopper infestation.
Metabolomics,2015,11(6):1640-1655
|
CSCD被引
4
次
|
|
|
|
9.
Mumm R. Multi-platform metabolomics analyses of a broad collection of fragrant and non-fragrant rice varieties reveals the high complexity of grain quality characteristics.
Metabolomics,2016,12(2):38
|
CSCD被引
2
次
|
|
|
|
10.
Xu Y J. Recent developments and applications of metabolomics in microbiological investigations.
TrAC Trends in Analytical Chemistry,2014,56:37-48
|
CSCD被引
9
次
|
|
|
|
11.
Cevallos-Cevallos J M. Metabolomic analysis in food science: a review.
Trends in Food Science & Technology,2009,20(11):557-566
|
CSCD被引
18
次
|
|
|
|
12.
Putri S P. Current metabolomics: practical applications.
Journal of Bioscience and Bioengineering,2013,115(6):579-589
|
CSCD被引
10
次
|
|
|
|
13.
Dunn W B. Metabolomics: current analytical platforms and methodologies.
TrAC Trends in Analytical Chemistry,2005,24(4):285-294
|
CSCD被引
46
次
|
|
|
|
14.
Aliferis K A. ~1H NMR and GC-MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia.
Metabolomics,2010,6(1):96-108
|
CSCD被引
10
次
|
|
|
|
15.
Lowe R G T. Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum.
Fungal Genetics and Biology,2009,46(5):381-389
|
CSCD被引
6
次
|
|
|
|
16.
Chen F. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion.
Journal of Proteome Research,2011,10(5):2273-2285
|
CSCD被引
3
次
|
|
|
|
17.
Zheng D. The Fghog1 pathway regulates hyphal growth,stress responses,and plant infection in Fusarium graminearum.
PLoS One,2012,7(11):e49495
|
CSCD被引
5
次
|
|
|
|
18.
Lowe R G T. A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum.
Fungal Genetics and Biology,2008,45(11):1479-1486
|
CSCD被引
1
次
|
|
|
|
19.
Estrada A E R. In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling.
Fungal Genetics and Biology,2011,48(9):874-885
|
CSCD被引
2
次
|
|
|
|
20.
Krishna H. Sharka in plums: Diagnostics and management.
Archives of Phytopathology and Plant Protection,2012,45(2):170-191
|
CSCD被引
1
次
|
|
|
|
|