基于MAX-DOAS的大气对流层SO_2垂直柱浓度遥测
Measuring Tropospheric Vertical Column Density of SO_2 by Multi-Axis Differential Optical Absorption Spectroscopy
查看参考文献30篇
文摘
|
基于多轴差分吸收光谱技术(multi-axis differential optical absorption spectroscopy, MAX-DOAS)获得了对流层SO_2垂直柱浓度。采用不同参考谱和不同波段来获得SO_2差分斜柱浓度,通过对比发现,当圈天顶光谱作为参考谱的反演误差最小,且全天相对稳定波动小,误差小于5%。通过六个波段的对比选取了最优反演波段为307.5~315 nm.结合地面气象数据对2015年10月14日~18日的污染过程进行了研究,数据分析表明风速和风向是影响监测点SO_2浓度的两个重要因素,城市和电厂产生的SO_2会在东风和南风的影响下向监测点输送。通过研究表明,MAX-DOAS能够准确反演大气对流层SO_2垂直柱浓度信息,对于探究城市大气对流层SO_2垂直柱浓度、卫星校验、模型校验以及污染输送的研究具有重要意义. |
其他语种文摘
|
The vertical column density (VCD) of tropospheric SO_2 was obtained by using multi-axis differential optical absorption spectroscopy (MAX-DOAS). And differential slant column density (dSCD) of SO_2 was got by using different reference spectra and different wave bands. By comparison, the error and the variation of error was minimum when using the sequential reference, and the error was less than 5%. Six wave bands were selected and compared to determine the optimal retrieval wave band which was 307.5~315 nm. Combined with meteorological data, a contamination process from 14th to 18th, October, 2015 was studied. The data analysis showed that wind speed and direction were two important factors affecting the concentration of SO_2 in monitoring site. The SO_2 produced from city and power plants was transported to monitoring site under the influence of east and south wind. According to the research, MAX-DOAS can accurately inverse the atmospheric SO_2 VCD, which has great significance for exploring the tropospheric SO_2 VCD of the city, satellite calibration, model validation and studying pollution transport. |
来源
|
大气与环境光学学报
,2017,12(1):33-42 【扩展库】
|
DOI
|
10.3969/j.issn.1673-6141.2017.01.005
|
关键词
|
多轴差分吸收光谱技术
;
对流层S0_2垂直柱浓度
;
最优反演波段
;
输送
|
地址
|
1.
中国科学技术大学环境科学与光电技术学院, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230026
2.
中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-6141 |
学科
|
环境质量评价与环境监测 |
基金
|
安徽省自然科学基金
;
国家自然科学基金
;
国家863计划
|
文献收藏号
|
CSCD:5906874
|
参考文献 共
30
共2页
|
1.
Krueger A J. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer.
Science,1983,220(4604):1377-1379
|
CSCD被引
17
次
|
|
|
|
2.
Lee C. SO_2 retrieval from SCIAMACHY using the weighting function DOAS (WFDOAS) technique: comparison with Standard DOAS retrieval.
Atmos.Chem. Phys,2008,8(20):6137-6145
|
CSCD被引
9
次
|
|
|
|
3.
Platt U. Simultaneous measurements of atmospheric CH_2O, O_3 and NO_2 by differential optical absorption.
J. Geophys. Res,1979,84:6329-6335
|
CSCD被引
152
次
|
|
|
|
4.
Platt U.
Differential Optical Absorption spectroscopy, Principles and Applications,2008:597
|
CSCD被引
1
次
|
|
|
|
5.
Galle B. A miniaturised ultraviolet spectrometer for remote sensing of SO_2 fluxes: a new tool for volcano surveillance.
J. Volcanol. Geothe. Res,2003,119(1):241-254
|
CSCD被引
5
次
|
|
|
|
6.
Galle B. Network for Observation of Volcanic and Atmospheric Change (NOVAC)-A global network for volcanic gas monitoring: Network layout and instrument description.
J. Geophys. Res,2010,115:D05304
|
CSCD被引
4
次
|
|
|
|
7.
McGonigle A J S. Measurement of volcanic SO_2 fluxes with differential optical absorption spectroscopy.
J. Volcanol. Geothe. Res,2007,162(3):111-122
|
CSCD被引
1
次
|
|
|
|
8.
Millan M.
Study of the Barringe Refractor Plate Correlation Spectrometer as a Remote Sensing Instrument. Master's Thesis,1969
|
CSCD被引
1
次
|
|
|
|
9.
Frieβ U. The vertical distribution of BrO and aerosols in the Arctic: Measurements by active and passive differential optical absorption spectroscopy.
J. Geophys. Res,2011,116(D14):D00R04
|
CSCD被引
7
次
|
|
|
|
10.
Groβmann K. Iodine monoxide in the Western Pacific marine boundary layer.
Atmos. Chem. Phys,2013,13(6):3363-3378
|
CSCD被引
1
次
|
|
|
|
11.
Heckel A. MAX-DOAS measurements of formaldehyde in the Po-Valley.
Atmos. Chem. Phys,2005,5(4):909-918
|
CSCD被引
11
次
|
|
|
|
12.
Wagner T. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO_2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets.
Atmos. Meas. Tech,2011,4(12):2685-2715
|
CSCD被引
15
次
|
|
|
|
13.
Wagner T. MAX-DOAS 04 measurements: A new technique to derive information on atmospheric aerosols-Principles and information content.
J. Geophys. Res,2004,109(D22):D22205
|
CSCD被引
26
次
|
|
|
|
14.
Clemer K. Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing.
Atmos. Meas. Tech,2010,3(4):863-878
|
CSCD被引
15
次
|
|
|
|
15.
Wittrock F. MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application.
Atmos. Chem. Phys,2004,4(4):955-966
|
CSCD被引
11
次
|
|
|
|
16.
Vlemmix T. Retrieval of tropospheric N02 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction.
Atmos. Meas. Tech,2010,3(5):1287-1305
|
CSCD被引
4
次
|
|
|
|
17.
王婷. 华北地区香河站对流层NO_2的MAX-DOAS光谱仪观测及变化特征分析.
气候与环境研究,2014,19(1):51-60
|
CSCD被引
17
次
|
|
|
|
18.
Bobrowski N. SO_2/BrO ratios studied in five volcanic plumes.
J. Volcanol. Geotherm. Res,2007,166(3):147-160
|
CSCD被引
3
次
|
|
|
|
19.
Galle B. Network for Observation of Volcanic and Atmospheric Change (NOVAC)-A global network for volcanic gas monitoring: Network layout and instrument description.
J. Geophys. Res,2010,115(D5):D05304
|
CSCD被引
4
次
|
|
|
|
20.
Lee C. Impact of transport of sulfur dioxide from the Asian continent on the air quality over Korea during May 2005.
Atmos. Environ,2008,42(7):1461-1475
|
CSCD被引
4
次
|
|
|
|
|