一种改进的灰狼优化算法
An Improved Grey Wolf Optimization Algorithm
查看参考文献13篇
文摘
|
灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一种控制参数a随机动态调整策略.此外,为了提高算法的全局收敛速度,用混沌初始化方法产生初始种群.采用18个高维测试函数进行仿真实验,结果表明:对于绝大多数情形,在相同最大适应度函数评价次数下,本文算法的性能明显优于标准灰狼优化算法. |
其他语种文摘
|
Grey wolf optimization (GWO) algorithm is a relatively novel optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in canonical GWO regarding its position update equation,which is good at exploitation but poor at exploration. Inspired by differential evolution and particle swarm optimization, the personal best information and the random selected individual from population are used to construct a modified position update equation for enhancing the exploration. Inspired by particle swarm optimization,a random adjustment strategy of control parameterais proposed. In addition, to enhance the global convergence,when producing the initial population, the chaos method is employed. Simulation experiments were conducted on the 18 high-dimensional conventional test functions. The simulation results show that the proposed algorithm provides better performance than basic GWO algorithms in the same or less number of maximum fitness function evaluation in most cases. |
来源
|
电子学报
,2019,47(1):169-175 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.01.022
|
关键词
|
灰狼优化算法
;
差分进化
;
粒子群优化
;
控制参数
;
混沌初始化
|
地址
|
1.
贵州财经大学, 贵州省经济系统仿真重点实验室, 贵州, 贵阳, 550025
2.
贵州财经大学数学与统计学院, 贵州, 贵阳, 550025
3.
湖南人文科技学院能源与机电工程学院, 湖南, 娄底, 417000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
贵州省高校科技拔尖人才支持计划
|
文献收藏号
|
CSCD:6437286
|
参考文献 共
13
共1页
|
1.
Mirjalili S. Grey wolf optimizer.
Advances in Engineering Software,2014,69(3):46-61
|
CSCD被引
905
次
|
|
|
|
2.
Long W. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization.
Engineering Application of Artificial Intelligence,2018,68:63-80
|
CSCD被引
20
次
|
|
|
|
3.
Guha D. Load frequency control of interconnected power system using grey wolf optimization.
Swarm and Evolutionary Computation,2016,27:97-115
|
CSCD被引
10
次
|
|
|
|
4.
姚鹏. 基于改进流体扰动算法与灰狼优化的无人机三维航路规划.
控制与决策,2016,31(4):701-708
|
CSCD被引
25
次
|
|
|
|
5.
Song H. An application of grey wolf optimizer for solving combined economic emission dispatch problems.
International Review on Modeling and Simulation,2014,7(5):838-844
|
CSCD被引
3
次
|
|
|
|
6.
Gupta E. Robust generation control strategy based on grey wolf optimizer.
Journal of Electrical Systems,2015,11(2):174-188
|
CSCD被引
2
次
|
|
|
|
7.
Komaki G. Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time.
Journal of Computational Science,2015,8(3):109-120
|
CSCD被引
30
次
|
|
|
|
8.
Zhu A. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC.
Journal of Systems Engineering and Electronics,2015,26(2):317-328
|
CSCD被引
13
次
|
|
|
|
9.
龙文. 协调探索和开发能力的改进灰狼优化算法.
控制与决策,2017,32(10):1749-1757
|
CSCD被引
28
次
|
|
|
|
10.
徐松金. 嵌入遗传算子的改进灰狼优化算法.
兰州理工大学学报,2016,42(4):102-108
|
CSCD被引
10
次
|
|
|
|
11.
Mirjalili S. How effective is the grey wolf optimizer in training multilayer perceptrons.
Applied Intelligence,2015,42(2):608-619
|
CSCD被引
10
次
|
|
|
|
12.
周凌云. 一种邻域重心反向学习的粒子群优化算法.
电子学报,2017,45(11):2815-2824
|
CSCD被引
21
次
|
|
|
|
13.
江善和. 一种新型Skew Tent映射的混沌混合优化算法.
控制理论与应用,2007,24(2):269-273
|
CSCD被引
11
次
|
|
|
|
|