镁合金超疏水环氧复合涂层的制备与性能
Preparation and properties of superhydrophobic epoxy composite coatings on magnesium alloys
查看参考文献28篇
文摘
|
传统的超疏水表面的制备过程比较复杂,机械稳定性差,这严重制约了超疏水表面的实际应用。采用“黏合剂+纳米粒子”的方法,在镁合金表面制备一种无氟、持久稳定的超疏水环氧复合涂层。接触角测试结果表明,复合涂层的接触角最高可达160.2°,且在3.5%(质量分数)NaCl溶液中浸泡30天后,接触角仍然高达103°;EIS结果表明,在5个加速老化循环周期后,复合涂层的|Z|_(0.01Hz)仍高于109Ω·cm~2,展现出优异的耐盐雾性能和耐蚀性能;摩擦磨损实验结果显示,在19.6N的载荷下机械摩擦8h后,复合涂层的|Z|_(0.01Hz)高达1.84×10~9Ω·cm~2。通过“空气垫”的屏障作用,复合涂层能够为镁合金提供高效且持久的腐蚀防护,“黏合剂+纳米粒子”策略为超疏水涂层的制备提供了新的思路。 |
其他语种文摘
|
The traditional preparation process of superhydrophobic surfaces(SHS)is complicated and the mechanical stability of SHS is less than satisfactory in most cases,which seriously restricts the practical application.The“binder+nanoparticles”strategy was used to prepare a nonfluorinated, durable and stable superhydrophobic epoxy composite coating on magnesium alloy.The contact angle test results show that the maximum contact angle of the composite coating is 160.2°,and the contact angle is still as high as 103°even after 30days of soaking in 3.5%(mass fraction)NaCl solution;EIS results indicate that the |Z|_(0.01Hz) of the composite coating is still above 109 Ω·cm~2 even after five accelerated aging cycles,demonstrating excellent resistance to salt fog and anticorrosion performance; Friction and wear test results reveal that the |Z|_(0.01Hz) of the composite coating is as high as 1.84×10~9 Ω·cm~2 after mechanical friction under 19.6Nload for 8h.Due to the excellent blocking barrier of “air cushion”,the composite coating can provide efficient and durable corrosion protection for magnesium alloy and the “adhesive+nanoparticles”strategy provides a new direction for the preparation of superhydrophobic coating. |
来源
|
材料工程
,2022,50(8):124-132 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001109
|
关键词
|
镁合金
;
超疏水涂层
;
腐蚀防护
;
环氧涂层
|
地址
|
1.
上海航天精密机械研究所, 上海, 201600
2.
华中科技大学化学与化工学院, 武汉, 430074
3.
宁东能源化工基地管委会, 银川, 750411
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
原子能技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7308150
|
参考文献 共
28
共2页
|
1.
袁杰. Mg合金在汽车工业中的应用进展.
铸造技术,2017,38(12):2799-2804
|
CSCD被引
7
次
|
|
|
|
2.
吴国华. 镁合金在航空航天领域研究应用现状与展望.
载人航天,2016,22(3):281-292
|
CSCD被引
80
次
|
|
|
|
3.
Xiao L. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide.
Industrial & Engineering Chemistry Research,2017,56(43):12354-12361
|
CSCD被引
8
次
|
|
|
|
4.
Furstner R. Wetting and self-cleaning properties of artificial superhydrophobic surfaces.
Langmuir,2005,21(3):956-961
|
CSCD被引
82
次
|
|
|
|
5.
何志伟. 铝基防冰表面的研究进展.
材料工程,2021,49(9):41-50
|
CSCD被引
2
次
|
|
|
|
6.
Shen Y. Spraying fabrication of durable and transparent coatings for anti-icing application:dynamic water repellency, icing delay,and ice adhesion.
ACS Applied Materials &Interfaces,2018,11(3):3590-3598
|
CSCD被引
4
次
|
|
|
|
7.
Zulfiqar U. Mechanically robust superhydrophobic coating from sawdust particles and carbon soot for oil/water separation.
Colloids and Surfaces A,2018,539:391-398
|
CSCD被引
3
次
|
|
|
|
8.
Vazirinasab E. Application of superhydrophobic coatings as a corrosion barrier:a review.
Surface and Coatings Technology,2018,341:40-56
|
CSCD被引
47
次
|
|
|
|
9.
Das S. A review on superhydrophobic polymer nanocoatings:recent development and applications.
Industrial & Engineering Chemistry Research,2018,57(8):2727-2745
|
CSCD被引
26
次
|
|
|
|
10.
Liu K. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance.
Applied Physics Letters,2008,92(18):183103-183106
|
CSCD被引
20
次
|
|
|
|
11.
朱亚利. 超疏水镁合金表面的防黏附和耐腐蚀性能.
材料工程,2016,44(1):66-70
|
CSCD被引
16
次
|
|
|
|
12.
Kobina S E. Recent development in the fabrication of self-healing superhydrophobic surfaces.
Chemical Engineering Journal,2019,373:531-546
|
CSCD被引
25
次
|
|
|
|
13.
Guo C. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer.
ChemPhysChem,2004,5(5):750-753
|
CSCD被引
31
次
|
|
|
|
14.
Zhai L. Stable superhydrophobic coatings from polyelectrolyte multilayers.
Nano Letters,2004,4(7):1349-1353
|
CSCD被引
30
次
|
|
|
|
15.
Qian B. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates.
Langmuir,2005,21(20):9007-9009
|
CSCD被引
114
次
|
|
|
|
16.
Xu W. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.
ACS Applied Materials &Interfaces,2011,3(11):4404-4414
|
CSCD被引
41
次
|
|
|
|
17.
Lau K K. Superhydrophobic carbon nanotube forests.
Nano Letters,2003,3(12):1701-1705
|
CSCD被引
66
次
|
|
|
|
18.
王帅.
静电纺丝法制备功能性超疏水材料,2013
|
CSCD被引
7
次
|
|
|
|
19.
Joung Y S. Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces.
Langmuir,2011,27(7):4156-4163
|
CSCD被引
3
次
|
|
|
|
20.
Li Y. Totally waterborne,nonfluorinated, mechanically robust and self-healing superhydrophobic coatings for actual anti-icing.
ACS Applied Materials &Interfaces,2018,10(45):39391-39399
|
CSCD被引
23
次
|
|
|
|
|