帮助 关于我们

返回检索结果

剪切变形下地幔矿物岩石电导率测量的新方法
A new method to measure the electrical conductivity of mantle minerals and rocks under shear deformation

查看参考文献43篇

文摘 本文中简要介绍了如何利用DIA型大压机同时在剪切变形和高温高压下测量地幔矿物岩石电导率的新方法.首先阐述了DIA型大压机的工作原理和剪切变形实验的步骤,然后选择了两个典型的实例分别从样品合成、实验组装、微组织结构观察等方面简要介绍了剪切变形下电导率测量的流程和最新进展,最后探讨了新结果在地球物理学方面的一些应用及存在的技术问题.目前实验研究表明:含一定量磁铁矿的蛇纹石在剪切变形下不可能在俯冲板块的表面形成相互连接的高导层,因而磁铁矿假说不能解释俯冲带的高电导率异常;此外,发现剪切应力能够诱发熔体在含部分熔融的橄榄岩颗粒边界的重新分布,从而熔体能够形成相互连接的各向异性网络,并导致与大地电磁观测结果相一致的高电导率各向异性.
其他语种文摘 In this paper, a new method was briefly introduced to measure the electrical conductivity of mantle minerals and rocks by using the DIA-type apparatus simultaneously under the shear deformation and high-temperature and high-pressure. Firstly, the principle of the DIA-type apparatus and the experimental procedures of shear deformation were outlined. Secondly, two typical examples were used to display the work flow and recent advances in conductivity measurement under shear deformation in the light of sample synthesis, cell assembly, microstructural observations and so on. Finally, the author discussed the geophysical implications of the present new results and pointed out some technical matters which need more improvements in future. The present experimental results show that the interconnection of magnetite in serpentinites by shear deformation is not expected as an origin of high conductivity anomaly occasionally observed at the slab interface in the mantle wedge. On the other hand, it is found that shear stress can induce the redistribution of melt in partially molten peridotite and form an anisotropically well-interconnected network under shear, which is most likely to explain the high anisotropic conductivity anomalies observed by MT surveys at the top of the asthenosphere.
来源 地球物理学进展 ,2013,28(5):2467-2474 【核心库】
关键词 剪切变形 ; 电导率 ; 高温高压 ; 各向异性 ; 矿物 ; 岩石
地址

冈山大学地球物质科学研究所, 日本, 三朝, 682-0193

语种 中文
文献类型 研究性论文
ISSN 1004-2903
学科 地球物理学
基金 国家自然科学基金 ;  日本文部省杰出研究中心项目共同资助
文献收藏号 CSCD:4994184

参考文献 共 43 共3页

1.  Lizarralde D. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J.Geophys.Res,1995,100(B9):17837-17854 CSCD被引 14    
2.  Wei W B. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science,2001,292(5517):716-718 CSCD被引 127    
3.  Evans R L. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature,2005,437(7056):249-252 CSCD被引 29    
4.  Ichiki M. An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia. Gondwana Research,2009,16(3/4):545-562 CSCD被引 7    
5.  Bai D H. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat.Geosci,2010,3(5):358-362 CSCD被引 205    
6.  Presnall D C. Changes in electrical conductivity of a synthetic basalt during melting. J. Geophys.Res,1972,77(29):5665-5672 CSCD被引 12    
7.  Tyburczy J A. Electrical conductivity of molten basalt and andesite to 25kilobars pressure:geophysical significance and implications for charge transport and melt structure. J. Geophys.Res,1983,88(B3):2413-2430 CSCD被引 18    
8.  Gaillard F. Carbonatite melts and electrical conductivity in the asthenosphere. Science,2008,322(5906):1363-1365 CSCD被引 37    
9.  Yoshino T. Electrical conductivity of partial molten carbonate peridotite. Phys.Earth Planet. Inter,2012,194/195:1-9 CSCD被引 6    
10.  黄小刚. 高温高压下矿物岩石电导率的实验研究进展. 地球物理学进展,2010,25(4):1247-1258 CSCD被引 10    
11.  Karato S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature,1990,347(6290):272-273 CSCD被引 64    
12.  Huang X G. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature,2005,434(7034):746-749 CSCD被引 38    
13.  Wang D J. The effect of water on the electrical conductivity of olivine. Nature,2006,443(7114):977-980 CSCD被引 34    
14.  Yoshino T. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature,2006,443(5223):973-976 CSCD被引 34    
15.  Yoshino T. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet.Sci.Lett,2009,288(1/2):291-300 CSCD被引 29    
16.  Dai L D. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proc.Jpn.Acad.,Ser.B,2009,85(10):466-475 CSCD被引 5    
17.  Zhang B H. Electrical conductivity of enstatite as a function of water content:Implications for the electrical structure in the upper mantle. Earth Planet. Sci.Lett,2012,357/358:11-20 CSCD被引 13    
18.  张宝华. 1600K和20GPa温压条件下的顽火辉石电导率. 地球物理学报,2010,53(3):760-764 CSCD被引 4    
19.  Marquis G. Geophysical support for aqueous fluids in the deep crust:seismic and electrical relationships. Geophys.J.Int,1992,110(1):91-105 CSCD被引 17    
20.  Shimojuku A. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions. Phys.Earth Planet.Inter,2012,198/199:1-8 CSCD被引 10    
引证文献 1

1 张宝华 剪切变形与部分熔融:原理、方法和应用 矿物岩石地球化学通报,2017,36(1):26-39
CSCD被引 2

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号