超声速燃烧数值模拟中复杂化学反应的建模方法
Modeling methodology for complex chemical mechanism involved in supersonic combustion simulation
查看参考文献176篇
文摘
|
高保真度的数值模拟有助于研究超声速条件下点火、熄火、火焰传播以及稳焰等关键物理-化学过程,推动对冲压发动机中复杂燃烧现象的准确理解与可靠预测。然而,实际发动机中碳氢燃料燃烧导致的广泛时空尺度对湍流燃烧的建模带来了极大的挑战。为此,必须首先解决超声速燃烧数值模拟中复杂化学反应的高保真建模问题。本文对超声速燃烧模拟中湍流-化学反应相互作用模型、机理简化以及求解加速方法的研究现状进行了总结。以典型燃料燃烧建模为主线,介绍了复杂化学反应的高保真建模方法以及不同化学反应机理在超燃模拟中的适用性及其影响。以反应机理三层次保真度评估体系为基础,进一步明确了简化机理在超燃数值模拟中的优势与不足,阐明了动态自适应化学方法在研究超声速条件下细致燃烧过程的必要性和可行性。 |
其他语种文摘
|
High-fidelity numerical simulation is considered as an indispensable approach to reveal key physical-chemical process such as ignition,extinction,flame propagation,and stabilization in supersonic flows,and promotes accurate understanding and reliable prediction of complex combustion phenomenon in ramjet engines.However,the extensive spatiotemporal scales caused by the combustion of hydrocarbon fuels in actual engines pose great challenges to turbulent combustion modeling.To overcome these challenges,high-fidelity modeling of complex chemistries in numerical simulation of supersonic combustion should be carefully handled.This paper gives a summary of the main research progresses in turbulence-combustion interaction model,mechanism reduction,and solution acceleration methods in supersonic combustion simulation.Taking typical fuels as prototypes,the high-fidelity modeling of complex chemistries, as well as applicability and influences of different chemical mechanisms in supersonic combustion are introduced.Based on the three-level fidelity evaluation methodology of chemical mechanism, the advantages and disadvantages of reduced mechanism are further clarified,and the necessity and feasibility of using dynamic adaptive chemistry method in the investigation of detailed combustion processes in supersonic flows are also elaborated. |
来源
|
空气动力学学报
,2020,38(3):552-576 【核心库】
|
DOI
|
10.7638/kqdlxxb-2020.0027
|
关键词
|
超声速燃烧
;
碳氢燃料
;
复杂化学反应
;
简化反应机理
;
动态自适应化学
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-1825 |
学科
|
航空 |
基金
|
国家重点实验室青年创新基金
|
文献收藏号
|
CSCD:6792717
|
参考文献 共
176
共9页
|
1.
王振国. 高超声速飞行器动力系统研究进展.
力学进展,2009,39(6):716-739
|
CSCD被引
43
次
|
|
|
|
2.
俞刚. 超声速燃烧与高超声速推进.
力学进展,2013,43(5):449-471
|
CSCD被引
37
次
|
|
|
|
3.
Maurice L. Liquid hydrocarbon fuels for hypersonic propulsion.
Scramjet Propulsion,2000:757-822
|
CSCD被引
3
次
|
|
|
|
4.
Wu K. Numerical investigation on flame stabilization in DLR hydrogen supersonic combustor with strut injection.
Combustion Science and Technology,2017,189(12):2154-2179
|
CSCD被引
2
次
|
|
|
|
5.
Lu T F. Toward accommodating realistic fuel chemistry in large-scale computations.
Progress in Energy and Combustion Science,2009,35(2):192-215
|
CSCD被引
24
次
|
|
|
|
6.
Chen Z.
Studies on the initiation,propagation and extinction of premixed flames,2009
|
CSCD被引
1
次
|
|
|
|
7.
孙明波. 部分预混超声速燃烧火焰面模式研究综述.
力学进展,2010,40(6):634-641
|
CSCD被引
12
次
|
|
|
|
8.
杨越. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型.
航空学报,2015,36(1):261-273
|
CSCD被引
13
次
|
|
|
|
9.
Fureby C. Large eddy simulation modelling of combustion for propulsion applications.
Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2009,367(1899):2957-2969
|
CSCD被引
2
次
|
|
|
|
10.
Ju Y. Recent progress and challenges in fundamental combustion research.
Advances in Mechanics,2014,44(1):26-97
|
CSCD被引
2
次
|
|
|
|
11.
Magnussen B F. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion.
Symposium (International)on Combustion. 16(1),1977:719-729
|
CSCD被引
2
次
|
|
|
|
12.
Kassem H I. Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM.
International Communications in Heat and Mass Transfer,2011,38(3):363-367
|
CSCD被引
4
次
|
|
|
|
13.
Spalding D B. Mixing and chemical reaction in steady confined turbulent flames.
Symposium (International)on Combustion. 13(1),1971:649-657
|
CSCD被引
1
次
|
|
|
|
14.
Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion.
Progress in Energy and Combustion Science,1984,10(3):319-339
|
CSCD被引
89
次
|
|
|
|
15.
Golovitchev V I.
3-D diesel spray simulations using a new detailed chemistry turbulent combustion model. SAE Technical Paper 2000-01-1891,2000
|
CSCD被引
1
次
|
|
|
|
16.
Pope S B. PDF methods for turbulent reactive flows.
Progress in Energy and Combustion Science,1985,11(2):119-192
|
CSCD被引
96
次
|
|
|
|
17.
Ghodke C. Large eddy simulation of supersonic combustion in a cavity-strut flameholder.
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando,Florida. AIAA 2011-323
|
CSCD被引
2
次
|
|
|
|
18.
Sun M B. Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder.
Journal of Propulsion and Power,2008,24(4):688-696
|
CSCD被引
12
次
|
|
|
|
19.
Zhang M. Large-eddy simulation of kerosene spray combustion in a model scramjet chamber.
Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2010,224(9):949-960
|
CSCD被引
3
次
|
|
|
|
20.
Williams F. Progress in knowledge of flamelet structure and extinction.
Progress in Energy and Combustion Science,2000,26(4/5/6):657-682
|
CSCD被引
16
次
|
|
|
|
|