水凝胶微针的研究进展
Research progress in hydrogel microneedle
查看参考文献86篇
文摘
|
微针是一种微凸起阵列组成的微创装置,能够穿透角质层到达表皮及真皮层,具有安全、无痛、微创、自我给药及便捷等优点。作为一种新型微针,水凝胶微针因其优良的性能在医学领域备受关注。水凝胶微针具有良好的生物相容性及力学性能,在皮肤作用之后可以被完整取下而不会在体内残留聚合物;其特有的溶胀性可以实现人体检测物微创提取及药物缓释,未来可以在个人身体健康监测及药物控释领域发挥巨大作用。本文围绕水凝胶微针的作用机理、微针设计、制备方法及应用进展进行了综述,重点探讨了水凝胶微针的设计参数及其在药物递送、提取监测及伤口愈合领域的应用现状,并指出水凝胶微针在皮肤感染风险、药代动力学及佩戴舒适性等方面存在的问题。未来的重点研究方向应是与智能设备相结合,在微针贴片上同时实现人体监测与药物智能控释。 |
其他语种文摘
|
Microneedles(MN)as a minimally invasive device consisting of a micro-raised array,can penetrate the cuticle to the epidermis and dermis,and which has the advantages of safety,painless, minimally invasive,self-administration and convenience.As a new kind of microneedles,hydrogel microneedles have attracted more attentions in the medical field due to its excellent performance. Hydrogel microneedles have good biocompatibility and mechanical properties,and can be completely removed after skin action without residual polymer in the body.Its unique swelling property can realize minimally invasive extraction of human detection substance and slow release of drugs,which can play a huge role in the field of personal health monitoring and drug controlled release in the future.The mechanism of action,design,preparation and application of hydrogel microneedles were reviewed in this paper,focusing on the current design parameters of hydrogel microneedles and their applications in drug delivery,extraction monitoring and wound healing,and the problems of hydrogel microneedles in skin infection risk,pharmacokinetics and wearing comfort were pointed out.In the future,the key research direction is to combine with intelligent devices to realize both human body monitoring and intelligent drug controlled release on the microneedle patch. |
来源
|
材料工程
,2023,51(6):52-65 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000176
|
关键词
|
微针
;
水凝胶
;
微模塑
;
药物递送
;
间质液提取
|
地址
|
1.
天津工业大学纺织科学与工程学院, 先进纺织复合材料教育部重点实验室, 天津, 300387
2.
宁夏中宁枸杞产业创新研究院有限公司, 宁夏, 中宁, 755199
3.
天津科技大学生物工程学院, 工业发酵微生物教育部重点实验室, 天津, 300457
4.
国家先进印染技术创新中心, 国家先进印染技术创新中心, 山东, 泰安, 271001
5.
天津工业大学材料科学与工程学院, 天津, 300387
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
宁夏回族自治区重点研发计划社发领域项目(重点)
;
天津市重点研发计划科技支撑重点项目
;
2021年宁夏回族自治区柔性引进科技创新团队项目
;
天津市农业科学院青年科技创新一般项目
;
宁夏中宁枸杞产业创新研究院项目
;
天津市卫生健康科技项目
;
天津市科技发展计划项目
|
文献收藏号
|
CSCD:7505504
|
参考文献 共
86
共5页
|
1.
Larraneta E. Microneedle arrays as transdermal and intradermal drug delivery systems:materials science,manufacture and commercial development.
Materials Science and Engineering:R,2016,104:1-32
|
CSCD被引
38
次
|
|
|
|
2.
Kim Y. Microneedles for drug and vaccine delivery.
Advanced Drug Delivery Reviews,2012,64(14):1547-1568
|
CSCD被引
61
次
|
|
|
|
3.
Dimatteo R. In situforming injectable hydrogels for drug delivery and wound repair.
Advanced Drug Delivery Reviews,2018,127:167-184
|
CSCD被引
41
次
|
|
|
|
4.
Donnelly R F. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery.
Advanced Functional Materials,2012,22(23):4879-4890
|
CSCD被引
23
次
|
|
|
|
5.
Mccrudden M T C. Considerations in the sterile manufacture of polymeric microneedle arrays.
Drug Delivery and Translational Research,2015,5(1):3-14
|
CSCD被引
2
次
|
|
|
|
6.
Donnelly R F. Hydrogel-forming microneedles increase in volume during swelling in skin,but skin barrier function recovery is unaffected.
Journal of Pharmaceutical Sciences,2014,103(5):1478-1486
|
CSCD被引
2
次
|
|
|
|
7.
Ahmed E M. Hydrogel:preparation,characterization,and applications: a review.
Journal of Advanced Research,2015,6(2):105-121
|
CSCD被引
156
次
|
|
|
|
8.
Turner J G. Hydrogel-forming microneedles:current advancements and future trends.
Macromolecular Bioscience,2020,21(2):2000307
|
CSCD被引
1
次
|
|
|
|
9.
Mcalister E. Directly compressed tablets:a novel drug-containing reservoir combined with hydrogel-forming microneedle arrays for transdermal drug delivery.
Advanced Healthcare Materials,2021,10(3):2001256
|
CSCD被引
4
次
|
|
|
|
10.
Khan N R. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery.
Current Pharmaceutical Design,2015,21(20):2848-2866
|
CSCD被引
1
次
|
|
|
|
11.
Teo A L. Transdermal microneedles for drug delivery applications.
Materials Science and Engineering:B,2006,132(1/2):151-154
|
CSCD被引
6
次
|
|
|
|
12.
Jones D S. Statistical modelling of the rheological and mucoadhesive properties of aqueous poly(methylvinylether-co-maleic acid)networks:redefining biomedical applications and the relationship between viscoelasticity and mucoadhesion.
Colloids and Surfaces:B,2016,144:125-134
|
CSCD被引
1
次
|
|
|
|
13.
Romanyuk A V. Collection of analytes from microneedle patches.
Analytical Chemistry,2014,86(21):10520-10523
|
CSCD被引
4
次
|
|
|
|
14.
Migdadi E M. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride.
Journal of Controlled Release,2018,285:142-151
|
CSCD被引
9
次
|
|
|
|
15.
Kumar A. PVA-based hydrogels for tissue engineering: a review.
International Journal of Polymeric Materials and Polymeric Biomaterials,2017,66(4):159-182
|
CSCD被引
11
次
|
|
|
|
16.
Wan W K. Poly(vinyl alcohol)cryogels for biomedical applications.
Advances in Polymer Science,2014,263:283-321
|
CSCD被引
1
次
|
|
|
|
17.
Kamoun E A. Crosslinked poly(vinyl alcohol)hydrogels for wound dressing applications:a review of remarkably blended polymers.
Arabian Journal of Chemistry,2015,8(1):1-14
|
CSCD被引
9
次
|
|
|
|
18.
He R. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid.
Advanced Healthcare Materials,2020,9(4):1901201
|
CSCD被引
12
次
|
|
|
|
19.
Poldervaart M T. 3Dbioprinting of methacrylated hyaluronic acid(MeHA)hydrogel with intrinsic osteogenicity.
Plos One,2017,12(6):e177628
|
CSCD被引
12
次
|
|
|
|
20.
Chang H. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis.
Advanced Materials,2017,29(37):1702243
|
CSCD被引
15
次
|
|
|
|
|