可注射乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及药物缓释研究
Preparation of injectable N-acetyl glycol chitosan/poloxamer composite hydrogel for drug release
查看参考文献24篇
文摘
|
泊洛沙姆(poloxamer)是一种温敏性聚合物,在浓度为15.0%(质量分数,下同)~30.0%时可形成凝胶。为改善泊洛沙姆在体温下的成胶浓度和药物缓释性能,以泊洛沙姆407为基底,与新型温敏性乙酰化乙二醇壳聚糖复合,制得了温敏性乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶。通过傅里叶变换红外光谱(FT-IR)、试管倒置法、旋转流变仪、扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-vis)对乙酰化乙二醇壳聚糖/泊洛沙姆的结构、温敏性、力学性能、微观形貌和体外药物释放性能进行表征。结果表明,乙酰化乙二醇壳聚糖/泊洛沙姆溶液具有热可逆温敏性溶胶-凝胶转变行为。通过控制乙酰化乙二醇壳聚糖/泊洛沙姆的质量比,能够使溶胶-凝胶转变温度处于室温与体温(25~37℃)之间,缩短凝胶化时间(382s),降低泊洛沙姆407在体温下的成胶浓度(6%)。乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶具有高度孔隙化的三维结构,其孔径大小处于10~60μm范围内,且表现出较高的力学性能。乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶对抗癌药物吉西他滨具有缓释作用,载药凝胶的释药时间可达72h。乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶在可注射药物缓释载体方面具有重要的应用前景。 |
其他语种文摘
|
Poloxamer is a thermo-sensitive polymer that can form gel at a concentration of 15.0%(mass fraction,the same as below)-30.0%.In order to decrease the gelatinization concentration and improve drug release properties of poloxamer at body temperature,thermo-sensitive N-acetyl glycol chitosan/ poloxamer composite hydrogel was prepared by complexing N-acetyl glycol chitosan with poloxamer 407(GC/P407).The structure,thermo-sensitivity,mechanical properties,morphology and in vitro drug release properties of GC/P407 were characterized by FT-IR,tube inverting method,rheometer, SEM and UV-vis spectroscopy.The GC/P407 solution shows reversible thermo-sensitive sol-gel transition behavior,and the sol-gel transition temperature is well controlled in the range of 25-37℃ by regulating the ratio of GC/P407,which shortens the gelation time and the gelatinization concentration(6%)of poloxamer 407at body temperature.GC/P407composite hydrogel,which has a highly porous three-dimensional structure with pore size of 10-60μm as demonstrated by SEM, exhibits high mechanical properties.In addition,the GC/P407composite hydrogel shows sustained release behavior of the anticancer drug gemcitabine,and the release time of the drug-loaded gel can reach 72h.GC/P407composite hydrogel shows the potential for biomedical application as injectable drug delivery carrier. |
来源
|
材料工程
,2020,48(5):83-90 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2019.001004
|
关键词
|
泊洛沙姆
;
乙酰化乙二醇壳聚糖
;
溶胶-凝胶转变
;
药物缓释载体
|
地址
|
1.
天津科技大学化工与材料学院, 天津, 300457
2.
天津科技大学, 天津市制浆造纸重点实验室, 天津, 300457
3.
复旦大学, 聚合物分子工程国家重点实验室, 上海, 200433
4.
天津科技大学, 天津市海洋资源与化学重点实验室, 天津, 300457
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
2018年度天津市教委科研计划项目
;
天津市海洋资源与化学重点实验室
;
天津市制浆造纸重点实验室开放基金资助项目
|
文献收藏号
|
CSCD:6731235
|
参考文献 共
24
共2页
|
1.
Sadia A. Controlled release of Montelukast sodium from pH-sensitive injectable hydrogels.
Int J Biol Macromol,2015,80:240-245
|
CSCD被引
2
次
|
|
|
|
2.
Sivashanmugam A. An overview of injectable polymeric hydrogels for tissue engineering.
Eur Polym J,2015,72:543-565
|
CSCD被引
13
次
|
|
|
|
3.
Cong T H. Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane)hydrogels for controlled release of doxorubicin.
Acta Biomater,2011,7:3123-3130
|
CSCD被引
2
次
|
|
|
|
4.
Nguyen Q V. Injectable polymeric hydrogels for the delivery of therapeutic agents:a review.
Eur Polym J,2015,72:602-619
|
CSCD被引
4
次
|
|
|
|
5.
Sytze J B. Hydrogels in a historical perspective:from simple networks to smart materials.
J Control Release,2014,190:254-273
|
CSCD被引
35
次
|
|
|
|
6.
Niels M B S. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery.
Acta Biomater,2014,10:4143-4155
|
CSCD被引
2
次
|
|
|
|
7.
Paul Z E. A functionalized,injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties.
J Control Release,2015,208:76-84
|
CSCD被引
2
次
|
|
|
|
8.
Lin C. Thermosensitive in situ-forming dextran-pluronic hydrogels through Michael addition.
Mater Sci Eng:C,2010,30:1236-1244
|
CSCD被引
3
次
|
|
|
|
9.
Pan Z. Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration.
Biomaterials,2018,160:56-68
|
CSCD被引
3
次
|
|
|
|
10.
Monier M. Preparation of crosslinked chitosan/glyoxal molecularly imprinted resin for efficient chiral resolution of aspartic acid isomers.
Biochem Eng J,2010,51:140-146
|
CSCD被引
8
次
|
|
|
|
11.
Gao G. Copper oxide nanoparticles induce enhanced radiosensitizing effect viadestructive autophagy.
Biomaterials,2019,188:83-95
|
CSCD被引
23
次
|
|
|
|
12.
Liu X. An in situ photocrosslinkable platelet rich plasma-complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair.
Acta Biomater,2017,62:179-187
|
CSCD被引
9
次
|
|
|
|
13.
Lee C K. Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4as a long-acting sustained-release anti-diabetic system.
Acta Biomater,2014,10:812-820
|
CSCD被引
3
次
|
|
|
|
14.
Li M. Noninvasive rapid bacteria-killingandacceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel.
Biomater Sci,2018,6(8):2110-2121
|
CSCD被引
15
次
|
|
|
|
15.
Jiang X. Two-dimensional black phosphorus: synthesis,modification,properties,andapplications.
J Controlled Release,2017,259:161-162
|
CSCD被引
1
次
|
|
|
|
16.
Chytil P. Bloodstream stability predetermines the antitumor efficacy of micellar polymer-doxorubicin drug conjugates with pH-triggered drug release.
Mol Pharm,2018,15(9):3654-3663
|
CSCD被引
1
次
|
|
|
|
17.
Elie Z. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering.
Biomaterials,2012,33:4810-4817
|
CSCD被引
3
次
|
|
|
|
18.
Cho I S. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications.
Carbohydr Polym,2016,144:59-67
|
CSCD被引
3
次
|
|
|
|
19.
Luo C. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network.
Mater Sci Eng:C,2015,46:316-324
|
CSCD被引
1
次
|
|
|
|
20.
李征征. 温敏性乙二醇壳聚糖水凝胶的制备及药物缓释性能高等学校.
化学学报,2016,37(12):2299-2305
|
CSCD被引
1
次
|
|
|
|
|