云南民乐铜矿床中玄武岩和流纹斑岩的成因:年代学和地球化学制约
Petrogenesis of the basalts and rhyolite porphyries of the Minle copper deposit,Yunnan:Geochronological and geochemical constraints
查看参考文献41篇
文摘
|
本文对云南民乐铜矿床中宋家坡组流纹斑岩进行了锆石SIMSU-Pb年代学,流纹斑岩和玄武岩的地球化学和Nd同位素研究工作,目的是揭示民乐铜矿床中赋矿建造次火山岩和玄武岩的成因和构造环境。宋家坡组玄武岩通常显示出较高的Fe_2O_3、Al_2O_3和Na_2O含量,随SiO_2含量增加,MgO、CaO和P_2O_5含量减小。玄武岩具有较高的ε_(Nd)(t)值(+2.9~+3.5),岩石稀土总量较低(∑REE=50.1×10~(-6)~60.6×10~(-6))并在球粒陨石标准化的稀土元素图解上显示出比较平坦的REE模式,在蛛网图上表现出Nb-Ta轻微亏损Sr富集的特征。这些岩石总体上表现出亚碱性玄武质岩石特征,原始岩浆很可能来源于长期亏损、富斜长石而贫石榴石的尖晶石地幔源区部分熔融。本文认为这些玄武岩形成过程中岩浆经历了结晶分异作用和不同程度的地壳混染作用。宋家坡组流纹斑岩的锆石SIMSU-Pb年龄为234.8±2.4Ma。这些岩石与一般流纹岩相比具有较高的SiO_2、(Na_2O+K_2O)和Al_2O_3含量,在球粒陨石标准化的稀土元素图解上显示出轻稀土元素(LREE)富集而重稀土元素相对平坦的模式,并具有轻微Eu负异常的特征。在原始地幔标准化的微量元素蛛网图上,这些岩石的Nb-Ta、Sr、P和Ti表现出明显亏损的特点。上述流纹斑岩显示出I型花岗岩的特征,其ε_(Nd)(t)为-1.9至-0.51之间。这些岩石的母岩浆很可能是弱碱性的流纹安山质岩浆,可能是由区域分布的中-新元古代镁铁质-中性的下地壳部分熔融而来,然后加入了少量的同时代玄武质岩浆。这些岩浆而后经历了较充分的结晶分异作用形成了流纹斑岩。民乐矿区玄武岩和流纹斑岩表现出岛弧火山岩的特征,很可能是在碰撞晚期-碰撞后环境下形成。 |
其他语种文摘
|
SIMS U-Pb zircon ages for rhyolite porphyries, and geochemical and Nd isotopic data are reported for rhyolite porphyries and the related basalts from the Songjiapo Formation of the Minle copper deposit of Yunnan Province, SW China.The aims are to constrain the origin and petrogenesis of these rocks.The basalts are commonly high in Fe_2O_3, Al_2O_3 and Na_2O contents.In the Harker diagrams, MgO, CaO and P_2O_5 contents of the basalts decrease with increasing SiO_2 contents.These rocks with high ε_(Nd)(t) values(+2.9~+3.5), are characterized by relatively low total REE contents(50.1×10~(-6)~60.6×10~(-6)) with relatively flat REE patterns in the chondrite-normalized diagram and with slightly negative Nb-Ta and positive Sr anomalies in the primitive-normalized spidergram.The parental magma for the basalts exhibits affinity with a sub-alkaline basaltic magma generated by melting of a depleted, plagioclase-rich and garnet-free mantle source in the spinel field.It is suggested that the basalts originated by fractional crystallization of the parental magma plus varying degrees of crustal contamination.Cameca SIMS zircon U-Pb dating indicates that the rhyolite porphyries were emplaced at 234.8±2.4Ma.These rocks have high SiO_2, (Na_2O+K_2O) and Al_2O_3 contents compared with the normal rhyolites, and are enriched in LREE and show relatively flat HREE patterns with slightly negative Eu anomalies in the chondrite-normalized diagram and significantly negative Nb-Ta, Sr, P and Ti anomalies in the primitive mantle-normalized spidergrams.The rhyolite porphyries display geochemical characteristics of I-type granites and exhibit variably initial ε_(Nd)(t) values ranging from-1.9 to-0.51.The parental magma for these rocks exhibits affinity with a mildly alkaline intermediate to felsic magma, which was probably generated by partial melting of the regional Mesoproterozoic to Neoproterozoic mafic to intermediate lower crust and thereafter mixed with small amounts of the Middle Triassic basaltic magmas.The rhyolite porphyries were then formed by extensive crystal fractionation of the mildly alkaline magma.The basalts and the rhyolite porphyries from the Minle copper deposit display the characteristics of arc volcanic rocks, which possibly formed in a late-collisonal to post-collisional environment. |
来源
|
岩石学报
,2011,27(9):2694-2708 【核心库】
|
关键词
|
中三叠世
;
玄武岩
;
流纹斑岩
;
民乐铜矿床
;
云南
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550002
2.
成都地质矿产研究所, 成都, 610081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家973计划
;
中国科学院知识创新工程重要方向项目
;
国家自然科学基金项目
;
中国科学院贵阳地球化学研究所矿床地球化学中国科学院重点实验室基金
|
文献收藏号
|
CSCD:4429203
|
参考文献 共
41
共3页
|
1.
Boynton W V. Geochemistry of the rare earth elements: Meteorite studies.
Rare Earth Element Geochemistry.,1984:63-114
|
CSCD被引
13
次
|
|
|
|
2.
Collins W J. Nature and origin of A-type granites with particular reference to southeastern Australia.
Contributions to Mineralogy and Petrology,1982,80:189-200
|
CSCD被引
801
次
|
|
|
|
3.
Deniel C. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean).
Chemical Geology,1998,144:281-303
|
CSCD被引
50
次
|
|
|
|
4.
Han B F. Depleted-mantle source for the Ulungur river A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth.
Chemical Geology,1997,138:135-159
|
CSCD被引
274
次
|
|
|
|
5.
Jahn B M. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China.
Chemical Geology,1999,157:119-146
|
CSCD被引
422
次
|
|
|
|
6.
Johnson K T M. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures.
Contributions to Mineralogy and Petrology,1998,133:60-68
|
CSCD被引
40
次
|
|
|
|
7.
Li X H. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: Evidence for extremely depleted mantle in the Paleoproterozoic.
Precambrian Research,2000,102:251-262
|
CSCD被引
20
次
|
|
|
|
8.
Li X H. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia.
Precambrian Research,2002,113:135-154
|
CSCD被引
209
次
|
|
|
|
9.
Li X H. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?.
Lithos,2007,96:186-204
|
CSCD被引
329
次
|
|
|
|
10.
Li X H. Petrogenesis of Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios.
Chinese Science Bulletin,2005,50:2481-2486
|
CSCD被引
61
次
|
|
|
|
11.
Li X H. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization.
Geochemistry Geophysics Geosystems,2009,10:Q04010
|
CSCD被引
145
次
|
|
|
|
12.
Lugmair G W. Lunar initial ~(143)Nd/~(144)Nd: Differential evolution of the lunar crust and mantle.
Earth and Planetary Science Letters,1978,39:349-357
|
CSCD被引
98
次
|
|
|
|
13.
Martin H. The Kuiqi peralkaline granitic complex (SE China): Petrology and geochemistry.
Journal of Petrology,1994,35:983-1015
|
CSCD被引
84
次
|
|
|
|
14.
Pearce J A. Tectonic setting of basic volcanic rocks determined using trace element analyses.
Earth and Planetary Science Letters,1973,19:290-300
|
CSCD被引
554
次
|
|
|
|
15.
Pearce J A. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.
Journal of Petrology,1984,25:956-983
|
CSCD被引
2532
次
|
|
|
|
16.
Qi L. Determination of trace elements in granites by inductively coupled plasma mass spectrometry.
Talanta,2000,51:507-513
|
CSCD被引
459
次
|
|
|
|
17.
Rehkamper M. Recycled ocean crust and sediment in Indian Ocean MORB.
Earth and Planetary Science Letters,1997,147:93-106
|
CSCD被引
37
次
|
|
|
|
18.
Roberts M P. Origin of high-potassium, calc-alkaline, I-type granitoids.
Geology,1993,21:825-828
|
CSCD被引
201
次
|
|
|
|
19.
Rudnick R L. Nature and composition of the continental crust: A lower crustal perspective.
Reviews of Geophysics,1995,33:267-309
|
CSCD被引
459
次
|
|
|
|
20.
Sobolev A V. Recycled oceanic crust observed in ghost plagioclase within the source of Mauna Loa Lavas.
Nature,2000,404:986-990
|
CSCD被引
29
次
|
|
|
|
|