Al和Ti含量对激光熔炼Al_xNbTi_yV轻质高熵合金组织与性能的影响
Effect of Al and Ti content on microstructure and properties of laser melting Al_xNbTi_yV lightweight high entropy alloy
查看参考文献24篇
文摘
|
轻质高熵合金在结构材料轻量化方面显示出巨大的应用价值,激光熔炼和激光增材制造技术因其极端冶金条件,为高熵合金研制提供了新思路。采用激光熔炼技术制备Al_xNbTiV(x=0.5~7)和AlNbTi_yV(y=1~7)纽扣试样,并对其相结构、显微组织和硬度进行了系统研究。结果表明:Al含量对合金相结构和显微组织有显著影响,Al含量低(x≤2)时, Al_xNbTiV合金由BCC单相固溶体组成;Al含量高(2
|
其他语种文摘
|
The lightweight high entropy alloys have shown great application value in the lightweight structural materials. Laser melting and laser additive manufacturing technology provide new ideas for the development of high entropy alloys due to their extreme metallurgical conditions. Al_xNbTiV(x=0.5-7) and AlNbTi_yV(y=1-7) button samples were prepared by laser melting technology, and their phase structure, microstructure and hardness were systematically studied. The results show that the Al content has a significant effect on the phase structure and microstructure of the alloy. When the Al content is low (x≤2), the Al_xNbTiV alloy is composed of BCC single-phase solid solution. When the Al content is high (2≤x≤7), intermetallic compounds appear in the alloy. With the increase of Al content, the BCC and TiAl phases change into TiAl_3 and NbAl3 phases. Ti content in a certain range (y≤7) will not affect the phase structure of the alloy. AlNbTi_yV alloys are composed of BCC single-phase solid solution. The content of Al and Ti has a great influence on the hardness of the alloy. When the Al_xNbTiV alloy is composed of BCC single phase, the hardness of the alloy increases with the increase of Al content, and the appearance of intermetallic compounds makes the hardness of the alloy no longer change with the change of Al content. The hardness of AlNbTi_yV alloy decreases with the increase of Ti content. |
来源
|
材料工程
,2024,52(1):137-145 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000505
|
关键词
|
激光熔炼
;
高熵合金
;
成分变化
;
显微组织
;
相结构
;
硬度
|
地址
|
1.
北京航空航天大学前沿科学技术创新研究院, 北京, 100191
2.
北京航空航天大学, 大型金属构件增材制造国家工程实验室, 北京, 100191
3.
北京航空航天大学宁波创新研究院, 浙江, 宁波, 315800
4.
北京航空航天大学材料科学与工程学院, 北京, 100191
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7652198
|
参考文献 共
24
共2页
|
1.
李萌. 轻质高熵合金的研究现状.
材料导报,2020,34(21):21125-21134
|
CSCD被引
2
次
|
|
|
|
2.
贾岳飞. 轻质高熵合金研究现状.
材料导报,2020,34(17):17003-17017
|
CSCD被引
6
次
|
|
|
|
3.
Miracle D B. A critical review of high entropy alloys and related concepts.
Acta Materialia,2017,122:448-511
|
CSCD被引
580
次
|
|
|
|
4.
Senkov O N. Development and exploration of refractory high entropy alloys-a review.
Journal of Materials Research,2018,33(19):3092-3128
|
CSCD被引
85
次
|
|
|
|
5.
Yang T. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys.
Science,2018,362(6417):36
|
CSCD被引
1
次
|
|
|
|
6.
Tseng K. A light-weight highentropy alloy Al_(20)Be_(20)Fe_(10)Si_(15)Ti_(35).
Science China Technological Sciences,2018,61(2):184-188
|
CSCD被引
16
次
|
|
|
|
7.
Huang X. Lightweight AlCrTiV highentropy alloys with dual-phase microstructure via microalloying.
Journal of Materials Science,2019,54(3):2271-2277
|
CSCD被引
13
次
|
|
|
|
8.
Hu G. Thermodynamic analysis of the formation reaction of second phases in Mg-Zn-Mn-Sn-Nd alloys.
Materials Science and Technology,2017,33(3):294-298
|
CSCD被引
2
次
|
|
|
|
9.
Shao L. A low-cost lightweight entropic alloy with high strength.
Journal of Materials Engineering and Performance,2018,27(12):6648-6656
|
CSCD被引
14
次
|
|
|
|
10.
斯庭智. Mg_xTiAlFeNiCr (x=0.6~2.0)高熵合金微结构演变及耐蚀性.
过程工程学报,2019,19(2):393-399
|
CSCD被引
2
次
|
|
|
|
11.
权峰. 高熵合金粉体制备及应用研究进展.
过程工程学报,2019,19(3):447-455
|
CSCD被引
8
次
|
|
|
|
12.
Raman L. Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy.
Materials Science and Engineering: A,2021,819:141503
|
CSCD被引
8
次
|
|
|
|
13.
Yang T. A review of diagnostics methodologies for metal additive manufacturing processes and products.
Materials,2021,14(17):4929
|
CSCD被引
1
次
|
|
|
|
14.
Yao H. High strength and ductility Al-CrFeNiV high entropy alloy with hierarchically heterogeneous laser melting.
Journal of Alloys and Compounds,2020,813:152196
|
CSCD被引
20
次
|
|
|
|
15.
Vogiatzief D. Laser power bed fusion and heat treatment of an AlCrFe_2Ni_2 high entropy alloy.
Frontiers in Materials,2020,7:248
|
CSCD被引
3
次
|
|
|
|
16.
Niu P D. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting.
Intermetallics,2019,104:24-32
|
CSCD被引
28
次
|
|
|
|
17.
Li M. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method.
Intermetallics,2018,95:110-118
|
CSCD被引
15
次
|
|
|
|
18.
Yurchenko N. Phase evolution of the AlxNbTiVZr (x = 0; 0.5; 1; 1.5) high entropy alloys.
Metals,2016,6(12):298
|
CSCD被引
1
次
|
|
|
|
19.
Zhi Q. Microstructure and properties of lightweight Al_2NbTi_xV_2Zr high entropy alloy.
Journal of Materials Engineering and Performance,2022,31(6):4934-4944
|
CSCD被引
3
次
|
|
|
|
20.
Zhou K. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys.
Intermetallics,2019,114:106592
|
CSCD被引
12
次
|
|
|
|
|