帮助 关于我们

返回检索结果

机器学习原子间相互作用建模
MOLECULAR MODELING BY MACHIN LEARNING

查看参考文献109篇

王涵 1,2  
文摘 原子间相互作用建模是分子动力学模拟的核心问题之一.基于第一性原理的建模准而不快,经验势模型快而不准,因此人们长期面临精度和效率只得其一的两难困境.基于机器学习的原子间相互作用建模在达到第一性原理精度的同时,计算开销大大降低,因而有希望解决这一两难困境.本文将介绍构造基于机器学习的原子间相互作用模型的一般框架,归纳近年来的主要建模工作,并探讨这些工作的优势和劣势.
其他语种文摘 Modeling the interatomic potential is one of the crucial problems in the field of molecular simulation. For a long time, the community faces the dilemma that the first-principles calculations are accurate but slow, while the empirical force fields are efficient but inaccurate. Machine learning is a promising approach to solve the dilemma because it achieves comparable accuracy with the first-principles calculations at a much lower expense. In this review, we present a general framework for developing the machine learning interatomic potentials, provide an incomplete list of recent work in this direction, and investigate the advantages and disadvantages of the reviewed approaches.
来源 计算数学 ,2021,43(3):261-278 【核心库】
DOI 10.12286/jssx.j2021-0833
关键词 机器学习 ; 原子间作用势 ; 分子动力学模拟
地址

1. 北京应用物理与计算数学研究所计算物理实验室, 北京, 100094  

2. 北京大学工学院应用物理与技术中心, 北京, 100871

语种 中文
文献类型 研究性论文
ISSN 0254-7791
学科 数学
基金 国家自然科学基金
文献收藏号 CSCD:7118700

参考文献 共 109 共6页

1.  Abrams C. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy,2014,16(1):163-199 CSCD被引 8    
2.  Bernardi R C. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta (BBA)-General Subjects,2015,1850(5):872-877 CSCD被引 13    
3.  Yang Y I. Enhanced sampling in molecular dynamics. The Journal of chemical physics,2019,151(7):070902 CSCD被引 6    
4.  Born M. Zur quantentheorie der molekeln. Annalen der physik,1927,389(20):457-484 CSCD被引 35    
5.  Schrodinger E. An undulatory theory of the mechanics of atoms and molecules. Physical review,1926,28(6):1049 CSCD被引 20    
6.  Hohenberg P. Inhomogeneous electron gas. Physical review,1964,136(3B):B864 CSCD被引 1092    
7.  Kohn W. Self-consistent equations including exchange and correlation effects. Physical review,1965,140(4A):A1133 CSCD被引 1328    
8.  Moller C. Note on an approximation treatment for many-electron systems. Physical review,1934,46(7):618 CSCD被引 65    
9.  Cizek J. On the correlation problem in atomic and molecular systems. Calculation of wave-function components in Ursell-type expansion using quantum-field theoretical methods. The Journal of Chemical Physics,1966,45(11):4256-4266 CSCD被引 7    
10.  Car R. Unified approach for molecular dynamics and density-functional theory. Physical review letters,1985,55(22):2471 CSCD被引 167    
11.  Daura X. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. Journal of Computational Chemistry,1998,19(5):535-547 CSCD被引 8    
12.  Schuler L D. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. Journal of Computational Chemistry,2001,22(11):1205-1218 CSCD被引 9    
13.  MacKerell A. All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B,1998,102(18):3586-3616 CSCD被引 136    
14.  Vanommeslaeghe K. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of computational chemistry,2010,31(4):671-690 CSCD被引 36    
15.  MacKerell A D. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of computational chemistry,2004,25(11):1400-1415 CSCD被引 23    
16.  Yu Y. CHARMM36 Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Phosphatidylethanolamine, Phosphatidylglycerol, and Ether Lipids. Journal of Chemical Theory and Computation,2021 CSCD被引 1    
17.  Wang J. Development and testing of a general amber force field. Journal of computational chemistry,2004,25(9):1157-1174 CSCD被引 122    
18.  Hornak V. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics,2006,65(3):712-725 CSCD被引 48    
19.  Lindorff-Larsen K. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics,2010,78(8):1950-1958 CSCD被引 55    
20.  Jorgensen W. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society,1996,118(45):11225-11236 CSCD被引 192    
引证文献 2

1 林博 机器学习辅助的纳米催化反应动力学研究进展 硅酸盐学报,2023,51(2):510-519
CSCD被引 0 次

2 常晓雅 机器学习势在含能材料分子模拟中的研究进展 火炸药学报,2023,46(5):361-377
CSCD被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号