(9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响
Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels
查看参考文献69篇
文摘
|
(9~12)%Cr钢中添加微量B元素可显著抑制M_(23)C_6碳化物的熟化,从而提高蠕变强度,增加蠕变断裂寿命。钢中B元素的择优分布行为是其充分发挥积极作用的关键,也是深入研究其作用机理的前提,一直是(9~ 12)%Cr马氏体耐热钢领域的研究热点。本文简述了B元素对钢力学性能的影响,介绍了表征钢中微量B元素分布的常用实验手段。在阐述B元素在钢中的物理冶金学原理以及固溶与扩散机制的基础上,重点讨论了B元素在(9~12)%Cr马氏体耐热钢中的择优分布行为及其影响因素。最后对目前微量B元素抑制马氏体耐热钢中M_(23)C_6碳化物熟化的2种机理进行了梳理,系统地阐述了B元素的择优分布行为与其抑制M_(23)C_6碳化物熟化、提高蠕变性能的积极作用之间的关系,深化对B元素在(9~12)%Cr马氏体耐热钢中的作用机理的认识。 |
其他语种文摘
|
Addition of small amount of boron (B) in the (9~12)%Cr martensitic heat resistant steels can obviously prohibit the Ostwald ripening of M_(23)C_6 carbides so as to improve creep strength as well as creep rupture life. With the purpose of taking full advantages of B element, it is critical to make B preferentially distribute in (9~12)%Cr martensitic heat resistant steels. The mechanism of B preventing M_(23)C_6 carbides from ripening is also on the premise of clearly identifying the preferential distribution of B in the steels. Much concern has been growing over the preferential distribution of B in the research of (9~ 12)%Cr martensitic heat resistant steels. Therefore, this article gives a review on this aspect. Following a summary of the effect of B on mechanical properties, several commonly used characterizing methods for B segregation in the steels are introduced. Based on the physical metallurgy and the solution, diffusion mechanisms of B element, discussions on the preferential distribution of B element at prior austenite grain boundaries and in the M_(23)C_6 carbides as well as the related factors are emphasized. At last, two prevalent mechanisms of B restraining the coarsening of M_(23)C_6 carbides in (9~12)%Cr martensitic heat resistant steels are given by an intensive explanation so that the relationship between the preferential distribution of B and its advantage of increasing creep performance by suppressing the ripening M_(23)C_6 carbides are systematically elaborated, which gives a deep understanding of the role of B element in (9~ 12)%Cr martensitic heat resistant steels. |
来源
|
金属学报
,2020,56(1):53-65 【核心库】
|
DOI
|
10.11900/0412.1961.2019.00146
|
关键词
|
马氏体耐热钢
;
B
;
偏聚
;
M_(23)C_6碳化物
;
Ostwald熟化
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 沈阳, 110016
3.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:6651011
|
参考文献 共
69
共4页
|
1.
刘正东. 超超临界火电机组用锅炉钢技术国产化问题.
钢铁,2009,44(6):1
|
CSCD被引
18
次
|
|
|
|
2.
李巍巍.
不确定条件下电煤供应链协调的机制设计及评价方法研究,2016
|
CSCD被引
1
次
|
|
|
|
3.
束国刚.
超临界锅炉用T/P91钢的组织性能与工程应用,2006:9
|
CSCD被引
1
次
|
|
|
|
4.
Msuyama F. History of power plants and progress in heat resistant steels.
ISIJ Int,2001,41:612
|
CSCD被引
4
次
|
|
|
|
5.
Maruyama K. Strengthening mechanisms of creep resistant tempered martensitic steel.
ISIJ Int,2001,41:641
|
CSCD被引
85
次
|
|
|
|
6.
Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700℃and above.
Engineering,2015,1:211
|
CSCD被引
35
次
|
|
|
|
7.
Yan P. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel.
Mater. Sci. Eng. A,2014,597:148
|
CSCD被引
20
次
|
|
|
|
8.
Liu F. Effect of boron on carbide coarsening at 873 K (600℃) in 9 to 12 pct chromium steels.
Metall. Mater. Trans. A,2012,43:4053
|
CSCD被引
5
次
|
|
|
|
9.
Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation.
Key Eng. Mater,2007,345/346:569
|
CSCD被引
5
次
|
|
|
|
10.
Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants.
Sci. Technol. Adv. Mater,2008,9:013002
|
CSCD被引
90
次
|
|
|
|
11.
Abe F. Effect of boron on microstructure and creep strength of advanced ferritic power plant steels.
Procedia Eng,2011,10:94
|
CSCD被引
12
次
|
|
|
|
12.
Titova T I. Effect of boron microalloying on the structure and hardenability of building steel.
Met. Sci. Heat Treat,2007,49:39
|
CSCD被引
6
次
|
|
|
|
13.
Grange R A. Factors affecting the hardenability of boron-treated steels.
Trans. Am. Soc. Met,1946,37:136
|
CSCD被引
1
次
|
|
|
|
14.
Maitrepierre P. Influence of boron on the decomposition of austenite in low carbon alloyed steels.
Metall. Mater. Trans. A,1975,6:287
|
CSCD被引
7
次
|
|
|
|
15.
Hwang B. Austenitizing temperature and hardenability of low-carbon boron steels.
Scr. Mater,2011,64:1118
|
CSCD被引
14
次
|
|
|
|
16.
Karlsson L. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel-I. Large scale segregation behaviour.
Acta Metall,1988,36:1
|
CSCD被引
22
次
|
|
|
|
17.
Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels.
ISIJ Int,2002,42:1150
|
CSCD被引
8
次
|
|
|
|
18.
李向龙.
硼、铌元素在微合金钢与高纯镍中的晶界偏聚行为,2017
|
CSCD被引
1
次
|
|
|
|
19.
Kapadia B M. Effect of boron additions on the toughness of heattreated low-alloy steels.
J. Heat Treat,1987,5:41
|
CSCD被引
2
次
|
|
|
|
20.
Ghali S N. Influence of boron additions on mechanical properties of carbon steel.
J. Miner. Mater. Charact. Eng,2012,11:995
|
CSCD被引
3
次
|
|
|
|
|