弹道修正迫弹制导方法与制导精度研究
Guidance Simulation and Experimental Verification of Trajectory Correction Mortar Projectile
查看参考文献15篇
文摘
|
针对传统迫击炮弹落点精度差,打击精度低,设计了迫击炮弹弹道修正算法,采用摄动落点偏差预测法、自适应比例导引法、自适应比例微分导引法对弹道进行修正。建立了六自由度弹道模型及控制模型,阐述了摄动落点偏差预测法和比例导引法基本原理;针对比例导引律中常值比例系数不符合实际弹道变化的特点,在纵向平面设计了自适应比例导引律,横向平面设计了自适应比例微分导引律。采用蒙特卡洛模拟打靶仿真验证,考察制导律在纵向平面、横向平面以及复合制导的修正能力。仿真结果表明,在纵向平面,自适应比例导引律效果最好;在横向平面,自适应比例微分导引律效果最好。仿真分析了3种制导方法的复合制导效果。仿真结果表明,在纵向平面升弧段采用摄动落点偏差预测制导方法,以及在降弧段纵向平面采用自适应比例导引律、在横向平面采用自适应比例微分导引律的复合制导能力得到有效提升,迫击炮弹落点圆概率误差从无控时的126.317 m降为0.965 5 m。大射角、小射程条件下模拟打靶,圆概率误差为1.864 3 m。 |
其他语种文摘
|
Aiming at the poor impact point accuracy and low strike accuracy of traditional mortar shell,the trajectory correction algorithm of mortar shell was designed. The trajectory was corrected by perturbation impact point deviation prediction method,adaptive proportional guidance method and adaptive proportional differential guidance method. The six degree of freedom trajectory model and control model were established,and the perturbation impact point deviation prediction method and proportional guidance method were proposed. In view of the fact that the constant proportional coefficient of proportional guidance law does not conform to the actual trajectory change,the adaptive proportional guidance law was designed in the longitudinal plane,and the adaptive proportional differential guidance law was designed in the transverse plane. Monte-Carlo simulation was used to verify the correction ability of guidance law in longitudinal plane,transverse plane and compound guidance. The simulation results show that the adaptive proportional navigation law was the best in the longitudinal plane,and the adaptive proportional differential navigation law was the best in the transverse plane. The composite guidance effect of three guidance methods was simulated and analyzed. The simulation results show that the composite guidance and correction ability of perturbed impact-point deviation prediction guidance method in the longitudinal plane of ascending arc,adaptive proportional guidance law in the longitudinal plane of descending arc and adaptive proportional differential guidance law in the transverse plane,were effectively improved,and the circular probable error of impact points of mortar was reduced from 126.317 m to 0.965 5 m. Under the conditions of large shooting angle and small range,the circular probable error is 1.864 3 m. |
来源
|
弹道学报
,2021,33(2):13-20 【核心库】
|
DOI
|
10.12115/j.issn.1004-499X(2021)02-002
|
关键词
|
制导
;
比例导引
;
摄动制导
;
比例微分
;
落点偏差
|
地址
|
1.
陆军工程大学弹药工程系, 河北, 石家庄, 050003
2.
陆军工程大学导弹工程系, 河北, 石家庄, 050003
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-499X |
学科
|
武器工业 |
文献收藏号
|
CSCD:7000052
|
参考文献 共
15
共1页
|
1.
张意. 国外制导迫弹发展综述.
弹箭与制导学报,2020,40(5):76-80,86
|
CSCD被引
3
次
|
|
|
|
2.
柯知非. 二维弹道修正组件发展现状及关键技术.
飞航导弹,2018,5:81-85
|
CSCD被引
1
次
|
|
|
|
3.
Kim T. Biased PNG law for impact-time control.
Japan Society for Aeronautical and Space Sciences,2013,56(4):205-214
|
CSCD被引
5
次
|
|
|
|
4.
穆忠伟. 偏置比例导引律在空地作战中的应用.
指挥与控制学报,2019,5(4):339-343
|
CSCD被引
2
次
|
|
|
|
5.
高敏. 基于摄动理论的纵向弹道修正方法改进.
弹道学报,2016,28(2):29-34
|
CSCD被引
2
次
|
|
|
|
6.
李超旺. 基于摄动原理的火箭弹落点实时预测.
兵工学报,2014,35(8):1164-1171
|
CSCD被引
10
次
|
|
|
|
7.
Khalil M. Projectile impact point prediction based on self-propelled artillery dynamics and doppler radar measurements.
Advances in Mechanical Engineering,2015,5:1-12
|
CSCD被引
1
次
|
|
|
|
8.
Kumru F. Performance evaluation of nonlinear filters on impact point prediction of ballistic targets.
20th International Conference on Information Fusion,2017:1-7
|
CSCD被引
1
次
|
|
|
|
9.
Shi Shaokun. Design of bias proportional navigation guidance law for motion target with impact angle constraint.
2018 IEEE CSAA Guidance,Navigation and Control Conference,2018:23-28
|
CSCD被引
1
次
|
|
|
|
10.
Lee S. Impact-time-control guidance strategy with a composite structure considering the seeker's field-of-view constraint.
Journal of Guidance,Control and Dynamics,2020,43(4):1-9
|
CSCD被引
1
次
|
|
|
|
11.
Kim H. Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint.
IEEE Transactions on Aerospace and Electronic Systems,2019,56(2):1602-1612
|
CSCD被引
11
次
|
|
|
|
12.
Li Kebo. Guidance strategy with impact angle constraint based on pure proportional navigation.
Acta Aeronautica et Astronautica Sinica,2020,41(2):79-88
|
CSCD被引
1
次
|
|
|
|
13.
Ma Shuai. BPNG law with arbitrary initial lead angle and terminal impact angle constraint and time-to-go estimation.
Acta Armamentarii,2019,40(1):68-78
|
CSCD被引
1
次
|
|
|
|
14.
Ratnoo A. State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories.
Journal of Guidance,Control,and Dynamics,2009,32(1):320-325
|
CSCD被引
31
次
|
|
|
|
15.
Ratnoo A. Impact angle constrained interception of stationary targets.
Journal of Guidance,Control,and Dynamics,2008,31(6):1816-1821
|
CSCD被引
57
次
|
|
|
|
|