Large eddy simulation of boundary layer flow under cnoidal waves
查看参考文献33篇
文摘
|
Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers. Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before. Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail. |
来源
|
Acta Mechanica Sinica
,2016,32(1):22-37 【核心库】
|
DOI
|
10.1007/s10409-015-0486-6
|
关键词
|
Boundary layer structure
;
Turbulence
;
Large eddy simulation
;
Cnoidal wave
|
地址
|
1.
Institute of Mechanics, Chinese Academy of Sciences, Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Chinese Academy of Sciences, Beijing, 100190
2.
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0567-7718 |
学科
|
力学 |
基金
|
support to this work from the National Natural Science Foundation of China
;
国家973计划
|
文献收藏号
|
CSCD:5660705
|
参考文献 共
33
共2页
|
1.
Sawamoto M. Sediment transport rate due to wave action.
J. Hydrosci. Hydr. Eng,1986,4:1-15
|
CSCD被引
4
次
|
|
|
|
2.
Fredsoe J.
Mechanics of Coastal Sediment Transport,1992
|
CSCD被引
12
次
|
|
|
|
3.
Tanaka H. Experimental and numerical investigation on asymmetric oscillatory boundary layers.
J. Hydrosci. Hydr. Eng,1998,16:117-126
|
CSCD被引
1
次
|
|
|
|
4.
Tanaka H. Theoretical and experimental investigation on laminar boundary layers under cnoidal wave motion.
Coast. Eng. J,1998,40:81-98
|
CSCD被引
4
次
|
|
|
|
5.
Carstensen S. Coherent structures in wave boundary layers. Part 1. Oscillatory motion.
J. Fluid Mech,2010,646:169-206
|
CSCD被引
4
次
|
|
|
|
6.
Gonzalez-Rodriguez D. Boundary-layer hydrodynamics and bedload sediment transport in oscillatingwater tunnels.
J. Fluid Mech,2011,667:48-84
|
CSCD被引
1
次
|
|
|
|
7.
Vittori G. Direct simulation of transition in an oscillatory boundary layer.
J. Fluid Mech,1998,371:207-232
|
CSCD被引
6
次
|
|
|
|
8.
Jensen B L. Turbulent oscillatory boundary layers at high Reynolds numbers.
J. Fluid Mech,1989,206:265-297
|
CSCD被引
22
次
|
|
|
|
9.
Sarpkaya T. Coherent structures in oscillatory boundary layers.
J. Fluid Mech,1993,253:105-140
|
CSCD被引
2
次
|
|
|
|
10.
Hino M. Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow.
J. Fluid Mech,1983,131:363-400
|
CSCD被引
12
次
|
|
|
|
11.
Salon S. A numerical investigation of the Stokes boundary layer in the turbulent regime.
J. Fluid Mech,2007,570:253-296
|
CSCD被引
3
次
|
|
|
|
12.
Costamagna P. Coherent structures in oscillatory boundary layers.
J. Fluid Mech,2003,474:1-33
|
CSCD被引
2
次
|
|
|
|
13.
Lin P. Numerical simulation of wave-induced laminar boundary layers.
Coast. Eng,2008,55:400-408
|
CSCD被引
1
次
|
|
|
|
14.
Lambkin D O. Wave period and flow asymmetry effects on transition to turbulence in relation to sediment dynamics.
J. Geophys. Res,2004,109:1-10
|
CSCD被引
1
次
|
|
|
|
15.
Lin P. A σ-coordinate three-dimensional numerical model for surface wave propagation.
Int. J. Numer. Meth. Fluids,2002,38:1045-1068
|
CSCD被引
10
次
|
|
|
|
16.
Lee S K. Laminar and turbulent bottom boundary layer induced by nonlinearwaterwaves.
J.Hydraul. Eng,1999,126:631-644
|
CSCD被引
1
次
|
|
|
|
17.
Kondo J.
Operational Method,1956
|
CSCD被引
1
次
|
|
|
|
18.
Nadaoka K. Characteristics of turbulent structure in asymmetrical oscillatory flow.
Proc. Coast. Eng,1994,41:141-145
|
CSCD被引
1
次
|
|
|
|
19.
Nadaoka K. Turbulent structure of asymmetrical oscillatory flow.
Proc. Coast. Eng,1996,43:441-445
|
CSCD被引
1
次
|
|
|
|
20.
Ribberink J S. Sheet flowand suspension of sand in oscillatory boundary layers.
Coast. Eng,1995,25:205-225
|
CSCD被引
6
次
|
|
|
|
|