含Sc高强铝合金薄板TIG焊与FSW接头组织与性能对比研究
Microstructure and Mechanical Properties of TIG and Friction Stir Welded Joints of Sc-contained High Strength Aluminum Alloy Sheet
查看参考文献22篇
文摘
|
分别对3 mm厚的Al-Zn-Mg-Cu-Sc高强铝合金薄板进行钨极惰性气体保护(Tungsten inert gas,TIG)焊与搅拌摩擦焊接(Friction stir welding,FSW),对比分析了两种焊接工艺下接头的微观组织与力学性能。结果表明:两种工艺都能获得无缺陷的接头。TIG焊核区晶粒粗大;硬度分布呈"M"形,中心值降至125 HV,最低值出现在热影响区(Heat-affected zone,HAZ)(约110 HV);拉伸时样品断在HAZ,接头强度约为417 MPa,为母材的71%。FSW焊核区为等轴细晶;硬度分布呈典型"W"型,最低值亦出现在HAZ(约115 HV),且随焊速的提高而提高;在400~1 200 r/min下均有可能获得高强度接头,其中转速1 200 r/min、焊速200 mm/min下接头强度最高(458 MPa),为母材的79%,拉伸样品断在HAZ。当焊速过快时,由于合金变形能力差,焊核区易出现缺陷,导致拉伸时接头过早断裂于焊核区中心。 |
其他语种文摘
|
3 mm thick Al-Zn-Mg-Cu-Sc alloy plates were subjected to tungsten inert gas welding (TIG) and friction stir welding (FSW), respectively. The microstructure and mechanical properties of the TIG and FSW joints were investigated. The results showed that defect-free joints of both TIG and FSW were acquired. For the TIG joint, the nugget zone (NZ) was characterized with coarsened grains, the hardness distribution exhibited "M" shape with low hardness value in the center (~125 HV), and the lowest hardness zone (LHZ, ~110 HV) located in the heat affected zone (HAZ); the ultimate tensile strength (UTS) of 417 MPa was obtained, ~71% of the BM. For the FSW joints, the NZs were characterized with exquiaxed fine grains, and the grain sizes decreased with increasing the welding speed; the hardness distribution presented "W" shape with the LHZ located in the HAZ (~115 HV). FSW joints with high strength could be obtained under the rotation rates of 400-1 200 r/min, and the highest UTS of 458 MPa was achieved under the rotation rate of 1 200 r/min and welding speed of 200 mm/min, ~79% of the BM. When the welding speed was too fast, defects were likely to appear in the NZs due to the poor deformation ability of the alloy, resulting in the premature failure of tensile samples in the center of the NZs. |
来源
|
机械工程学报
,2020,56(6):221-228 【核心库】
|
DOI
|
10.3901/jme.2020.06.221
|
关键词
|
高强铝合金
;
TIG焊
;
搅拌摩擦焊
;
微观组织
;
力学性能
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
东北轻合金有限责任公司, 哈尔滨, 150060
3.
北京航天新风机械设备有限责任公司, 北京, 100854
|
语种
|
中文 |
ISSN
|
0577-6686 |
学科
|
金属学与金属工艺 |
基金
|
NSFC-钢铁联合基金资助项目
|
文献收藏号
|
CSCD:6711451
|
参考文献 共
22
共2页
|
1.
蹇海根. 航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展.
热加工工艺,2006,35(12):66-71
|
被引
12
次
|
|
|
|
2.
刘晓涛. Al-Zn-Mg-Cu系超高强铝合金的研究进展.
材料导报,2005,19(3):47-50
|
被引
49
次
|
|
|
|
3.
商海东. 喷射成型7055铝合金锻件的高温力学性能.
粉末冶金材料科学与工程,2017,22(5):1673-0224
|
被引
1
次
|
|
|
|
4.
周民. 含钪微合金化铝合金研究现状及发展趋势.
中国材料进展,2018,37(2):154-160
|
被引
11
次
|
|
|
|
5.
陈琴. 微量Sc和Zr对Al-Mg-Mn合金组织与力学性能的影响.
中国有色金属学报,2012,22(6):1555-1563
|
被引
15
次
|
|
|
|
6.
张思平. 含Sc铝合金的应用研究新进展与前景展望.
铝加工,2019(2):4-9
|
被引
4
次
|
|
|
|
7.
徐雪芳. 钪含量对7050铝合金组织与力学性能的影响.
金属热处理,2018,43(9):6-9
|
被引
3
次
|
|
|
|
8.
陈勇. Sc和Zr对7055合金铸态及热处理态组织和性能的影响.
特种铸造及有色合金,2018,38(7):1130-1133
|
被引
2
次
|
|
|
|
9.
宋友宝. 7xxx系铝合金焊接研究现状与展望.
中国有色金属学报,2018,28(3):492-501
|
被引
8
次
|
|
|
|
10.
Mishra R S. Friction stir welding and processing.
Materials Science and Engineering:R,2005:1-78
|
被引
412
次
|
|
|
|
11.
Padhy G K. Friction stir based welding and processing technologies -processes, parameters, microstructures and applications: A review.
Journal of Materials Science and Technology,2018,34:1-38
|
被引
48
次
|
|
|
|
12.
杨超. 包铝层对7B04-O铝合金薄板搅拌摩擦搭接性能影响.
机械工程学报,2015,51(22):54-59
|
被引
2
次
|
|
|
|
13.
韩培培. 固溶处理对7B04-O铝合金搅拌摩擦焊接接头微观组织与力学性能的影响.
机械工程学报,2015,51(22):35-41
|
被引
7
次
|
|
|
|
14.
Zhang D K. Effects of weld penetration on tensile properties of 2219 aluminum alloy TIG-welded joints.
Transactions of Nonferrous Metals Society of China,2019,29(6):1161-1168
|
被引
3
次
|
|
|
|
15.
Aliakbari S. Effect of through-thickness friction stir processing parameters on weld repair and modification of fusion-welded AA6061 aluminum alloy.
Journal of Materials Engineering and Performance,2019,28(5):2688-2696
|
被引
1
次
|
|
|
|
16.
Toda H. The true origin of ductile fracture in aluminum alloys.
Metallurgical and Materials Transactions A,2014,45(2):765-776
|
被引
2
次
|
|
|
|
17.
Yang C. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates.
Materials Characterization,2018,145:20-28
|
被引
2
次
|
|
|
|
18.
Liu F C. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy.
Metallurgical and Materials Transactions A,2008,39:2378-2388
|
被引
29
次
|
|
|
|
19.
Yang C. Friction stir welding and low-temperature superplasticity of 7B04 Al sheet.
Acta Metall. Sin. (Engl. Lett.),2015,51:1449-1456
|
被引
1
次
|
|
|
|
20.
Feng A H. Microstructure and Strain Hardening of a Friction Stir Welded High-Strength Al–Zn–Mg Alloy.
Acta Metall. Sin. (Engl. Lett.),2014,27:723-729
|
被引
9
次
|
|
|
|
|