Martensitic stabilization and defects induced by deformation in TiNi shape memory alloys
查看参考文献23篇
文摘
|
Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied. Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization. Martensitic stabilization was demonstrated by differential scanning calorimetry for the tensioned TiNi shape memory alloy. Transmission electron microscopy revealed that antiphase boundaries were formed because of the fourfold dissociation of [110]B19'super lattice dislocations and were preserved after reverse transformation due to the lattice correspondence. Martensitic stabilization was attributed to dislocations induced by deformation, which reduced the ordering degree of the microstructure, spoiled the reverse path from martensite to parent phase compared with thermoelastic transformation, and imposed resistance on phase transformation through the stress field |
来源
|
International Journal of Minerals
, Metallurgy and Materials,2011,18(1):66-69 【核心库】
|
DOI
|
10.1007/s12613-011-0401-5
|
关键词
|
shape memory alloys
;
transmission electron microscopy
;
martensitic transformations
;
stabilization
;
defects
|
地址
|
1.
Northeastern University, Key Laboratory for Anisotropy and Texture of Materials (MOE), Shenyang, 110819
2.
Structural Functions Research Group, Innovative Materials Engineering Laboratory, National Institute for Materials Science, Japan, Japan, Tsukuba, 305-0047
3.
Department of Production Systems Engineering, Toyohashi University of Technology, Japan, Toyohashi, 441-8580
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-4799 |
学科
|
轻工业、手工业、生活服务业 |
文献收藏号
|
CSCD:4381639
|
参考文献 共
23
共2页
|
1.
M. Nishida. Electron microscopy studies of twin morphologies in B19' martensite in the Ti-Ni shape memory alloy.
Acta Metall. Mater,1995,43(3):1219
|
CSCD被引
7
次
|
|
|
|
2.
A.N. Tyumentsev. Mechanism of deformation and crystal lattice reorientation in strain localization bands and deformation twins of the B2 phase of titanium nickelide.
Acta Mater,2004,52(7):2067
|
CSCD被引
2
次
|
|
|
|
3.
J.X. Zhang. Deformation mechanism of martensite in Ti-rich Ti-Ni shape memory alloy thin films.
Acta Mater,2006,54(4):1185
|
CSCD被引
4
次
|
|
|
|
4.
S. Ii. Direct evidence of correlation between {20 1}B19 and {114}B2 deformation twins in Ti-Ni shape memory alloy.
Scripta Mater,2003,49(7):723
|
CSCD被引
4
次
|
|
|
|
5.
M. Nishida. Microstructure modifications by tensile deformation in Ti-Ni-Fe alloy.
J. Phys. IV JP,2003,112:803
|
CSCD被引
1
次
|
|
|
|
6.
P. Thamburaja. Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti-Ni sheet.
Acta Mater,2005,53(14):3821
|
CSCD被引
5
次
|
|
|
|
7.
H.C. Lin. The effects of cold rolling on the martensitic transformation of an equiatorriic TiNi alloy.
Acta Metall. Mater,1991,39(9):2069
|
CSCD被引
20
次
|
|
|
|
8.
M. Piao. Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys.
Mater. Trans. JIM,1993,34(10):919
|
CSCD被引
37
次
|
|
|
|
9.
G. Tan. Comparative study of deformation-induced martensite stabilisation via martensite reorientation and stress-induced martensitic transformation in NiTi.
Intermetallics,2004,12(4):373
|
CSCD被引
8
次
|
|
|
|
10.
Y. Liu. Deformation-induced martensite stabilisation in [100] single-crystalline Ni-Ti.
Mater. Sci. Eng. A,2006,438/440:612
|
CSCD被引
2
次
|
|
|
|
11.
Y. Liu. Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi.
Acta Mater,2000,48(13):3489
|
CSCD被引
10
次
|
|
|
|
12.
H.R. Hilzinger. Investigation of bloch-wall-pinning by antiphase boundaries in RCo5-compounds.
Phys. Lett. A,1975,51(1):59
|
CSCD被引
1
次
|
|
|
|
13.
P.L. Rodriguez. Plastic deformation in Cu-Zn-Al 18r martensite, Electron microscopy analysis of dislocations.
Scripta Metall. Mater,1992,27(9):1133
|
CSCD被引
1
次
|
|
|
|
14.
H.Y. Yasuda. Effect of Al concentration on pseudoelasticity in Fe3A1 single crystals.
Acta Mater,2005,53(20):5343
|
CSCD被引
1
次
|
|
|
|
15.
J. Pons. Accommodation of y-phase precipitates in Cu-Zn-Al shape memory alloys studied by high resolution electron microscopy.
Acta Mater,1997,45(5):2109
|
CSCD被引
3
次
|
|
|
|
16.
R.W. Fonda. Microstructure, crystallography, and shape memory effect in equiatomic NbRu.
Mater. Sci. Eng. A,1999,273/275:275
|
CSCD被引
4
次
|
|
|
|
17.
Y. Murakami. TEM studies of crystallographic and magnetic microstructures in Ni-based ferromagnetic shape memory alloys.
Mater. Sci. Eng. A,2006,438/440:1050
|
CSCD被引
2
次
|
|
|
|
18.
Y. Murakami. Changes in microstructure near the R-phase transformation in Ti50Ni48Fe2 studied by in-situ electron microscopy.
Philos. Mag. Lett,2001,81(9):631
|
CSCD被引
3
次
|
|
|
|
19.
Y. Murakami. Precursor effects of martensitic transformations in Ti-based alloys studied by electron microscopy with energy filtering.
J. Microsc,2001,203(1):22
|
CSCD被引
1
次
|
|
|
|
20.
M. Matsuda. High-angle annular dark field scanning transmission electron microscopy of the antiphase boundary in a rapidly solidified B2 type TiPd compound.
Philos. Mag. Lett,2007,87(1):59
|
CSCD被引
2
次
|
|
|
|
|