Nonlinear Inverse Relations of the Bell Polynomials via the Lagrange Inversion Formula (II)
查看参考文献17篇
文摘
In this paper,by means of the classical Lagrange inversion formula,the authors establish a general nonlinear inverse relation as the solution to the problem proposed in the paper [J.Wang,Nonlinear inverse relations for the Bell polynomials via the Lagrange inversion formula,J.Integer Seq.,Vol.22 (2019),Article 19.3.8].As applications of this inverse relation,the authors not only find a short proof of another nonlinear inverse relation due to Birmajer,et al.(2012),but also set up a few convolution identities concerning the Mina polynomials.
来源
Journal of Systems Science and Complexity
,2023,36(1):96-116 【核心库】
DOI
10.1007/s11424-022-1300-8
关键词
Bell polynomial
;
convolution identity
;
formal power series
;
Lagrange inversion formula
;
Mina polynomial
;
nonlinear inverse relation
;
recurrence relation
地址
1.
Department of Mathematics,Soochow University, Suzhou, 215006
2.
Department of Mathematics,Zhejiang Normal University, Jinhua, 321004
语种
英文
文献类型
研究性论文
ISSN
1009-6124
学科
数学
基金
国家自然科学基金
;
浙江省自然科学基金
文献收藏号
CSCD:7551066
参考文献 共
17
共1页
1.
Henrici P.
Applied and Computational Complex Analysis, Vol.1,1974
CSCD被引
2
次
2.
Comtet L.
Advanced Combinatorics,1974
CSCD被引
46
次
3.
Wang J. Nonlinear inverse relations for Bell polynomials via the Lagrange inversion formula.
J. Integer Seq,2019,22:Article 19.3.8
CSCD被引
1
次
4.
Riordan J.
Combinatorial Identities,1968
CSCD被引
15
次
5.
Chou W S. Application of Faa di Bruno's formula in characterization of inverse relations.
J. Comput. Appl. Math,2006,190:151-169
CSCD被引
3
次
6.
Mihoubi M. Partial Bell polynomials and inverse relations.
J. Integer Seq,2010,13:Article 10.4.5
CSCD被引
2
次
7.
Birmajer D. Some convolution identities and an inverse relation involving partial Bell polynomials.
Electron. J. Combin,2012,19:#P34
CSCD被引
1
次
8.
Huang J F. Two Elementary Applications of the Lagrange Expansion Formula.
J. Math. Res. Appl,2015,35:263-270
CSCD被引
2
次
9.
Birmajer D. A family of Bell transformations.
Discrete Math,2019,342:38-54
CSCD被引
1
次
10.
He T X. One-pth Riordan Arrays in the Construction of Identities.
J. Math. Res. Appli,2021,41:111-126
CSCD被引
2
次
11.
Bell E T. Generalized Stirling transforms of sequences.
Amer. J. Math,1940,62:717-724
CSCD被引
2
次
12.
Gessel I M. Lagrange inversion.
J. Combin. Theory Ser. A,2016,144:212-249
CSCD被引
3
次
13.
Gould H W. Some generalizations of Vandermonde's convolution.
Amer. Math. Monthly,1956,63:84-91
CSCD被引
5
次
14.
Hofbauer J. Lagrange inversion.
Sem. Lothar. Combin,1982,6:B06a
CSCD被引
1
次
15.
Merlini D. Lagrange inversion: When and how.
Acta Appl. Math,2006,94:233-249
CSCD被引
7
次
16.
Taghavian H.
A fast algorithm for computing Bell polynomials based on index break-downs using prime factorization
CSCD被引
1
次
17.
Wang J. Some Notices on Mina Matrix and Allied Determinant Identities.
J. Math. Res. Appli,2016,36:253-264
CSCD被引
1
次