万山汞矿区稻田土壤生物有效性汞的提取方法
A Study on the extraction method of bioavailabe mercury in the contaminated paddy soil in the Wanshan area, Guizhou Province, China
查看参考文献38篇
文摘
|
土壤中汞的生物有效性是决定土壤汞污染和农作物汞富集的重要指标。然而,采用不同提取方法所得到的有效态汞含量存在差异。为探索适用于汞矿区稻田土壤生物有效性汞的提取方法,研究对比了4种提取剂(超纯水、0.005 mol/L DTPA混合液、0.1 mol/L CaCl_2和0.1 mol/L HCl)对万山汞矿区内两条典型河流沿岸稻田土壤生物有效态汞的测定结果。结果表明,万山汞矿区稻田土壤总汞含量均值为(12.7±0.42)mg/kg,超标率为93%。土壤生物有效态汞含量较低,4种试剂提取的有效态汞占总汞比例依次为0.005%、0.018%、0.003%和0.036%;超纯水提取的土壤生物有效态汞与稻田土壤、水稻根和茎的总汞浓度显著相关,表明超纯水提取方法最适用于测定万山汞矿区稻田土壤的生物有效态汞。本研究可为评估土壤汞污染风险提供技术和数据参考。 |
其他语种文摘
|
The bioavailability of soil mercury(Hg)is an important indicator for the assessment of Hg contamination in soils and Hg enrichment in crops.However, the contents of bioavailabe mercury obtained by using different extraction methods are quite different.In order to explore the relevant extraction method of bioavailable Hg in paddy soils in the Wanshan Hg mine area, four kinds of extractants(H_2O, 0.005 mol/L DTPA, 0.1 mol/L CaCl_2 and 0.1 mol/L HCl)have been used in this study for the extraction of bioavailable Hg in paddy soils along two sides of two typical rivers in theg area.The results show that the total Hg(THg)contents in paddy soils are seriously elevated(THg contents of 93% soil samples are higher than the regulation standard), with an average of 12.7±0.42 mg/kg, but the contents of bioavailable Hg in paddy soils are relatively low.The proportions of contents of bioavailable Hg, extracted by using the four reagents, to the THg contents are 0.005%, 0.018%, 0.003%, and 0.036%, respectively.The bioavailable Hg concentrations extracted by using pure water are significant positively correlated with the THg concentrations in paddy soils, rice roots, and rice stems, indicating that the pure water extraction method is most suitable one for the determination of bioavailable Hg contents in paddy soils in the Wanshan Hg mine area.This study can provide technical and data supports for the risk assessment of Hg pollution in soils. |
来源
|
矿物学报
,2022,42(1):106-112 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2021.41.097
|
关键词
|
万山汞矿区
;
土壤
;
稻田
;
生物有效态汞
;
汞提取方法
|
地址
|
1.
贵州大学化学与化工学院, 贵州, 贵阳, 550025
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
环境污染及其防治 |
基金
|
国家重点研发计划项目
|
文献收藏号
|
CSCD:7130715
|
参考文献 共
38
共2页
|
1.
冯新斌. 汞的环境地球化学研究进展.
矿物岩石地球化学通报,2013,32(5):503-530
|
CSCD被引
66
次
|
|
|
|
2.
Chen L. Trans-provincial health impacts of atmospheric mercury emissions in China.
Nature Communications,2019,10(1):1484
|
CSCD被引
14
次
|
|
|
|
3.
Clarkson T W. Mercury-Major Issues in Environmental-Health.
Environmental Health Perspective,1993,100:31-38
|
CSCD被引
11
次
|
|
|
|
4.
Mergler D. Methylmercury exposure and health effects in humans:A worldwide concern.
Ambio,2007,36(1):3-11
|
CSCD被引
52
次
|
|
|
|
5.
Parks J M. The genetic basis for bacterial mercury methylation.
Science,2013,339(6125):1332-1335
|
CSCD被引
46
次
|
|
|
|
6.
Zhang H. In inland China,rice,rather than fish,is the major pathway for methylmercury exposure.
Environmental Health Perspective,2010,118(9):1183-1118
|
CSCD被引
76
次
|
|
|
|
7.
Feng X B. Human exposure to methylmercury through rice intake in mercury mining areas,guizhou province,china.
Environmental Science & Technology,2008,42(1):326-332
|
CSCD被引
40
次
|
|
|
|
8.
Xu X H. Methylmercury and inorganic mercury in Chinese commercial rice:Implications for overestimated human exposure and health risk.
Environmental Pollution,2019(258):113706
|
CSCD被引
1
次
|
|
|
|
9.
Yan J Y. Mercury concentration and speciation in mine wastes in Tongren mercury mining area,southwest China and environmental effects.
Applied Geochemistry,2019,106:112-119
|
CSCD被引
5
次
|
|
|
|
10.
Li P. Mercury pollution from artisanal mercury mining in Tongren,Guizhou,China.
Applied Geochemistry,2008,23(8):2055-2064
|
CSCD被引
23
次
|
|
|
|
11.
Li Z. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province,China.
Applied Geochemistry,2011,26(2):160-166
|
CSCD被引
10
次
|
|
|
|
12.
Wu Q R. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter.
Science of the Total Environment,2014,496:668-677
|
CSCD被引
1
次
|
|
|
|
13.
Li R. Mercury pollution in vegetables,grains and soils from areas surrounding coal-fired power plants.
Scientific Reports,2017,7:46545
|
CSCD被引
1
次
|
|
|
|
14.
刘清. 重金属形态与生物毒性及生物有效性关系的研究进展.
环境科学,1996,17(1):89-92
|
CSCD被引
169
次
|
|
|
|
15.
谢飞. 二乙三胺五乙酸-三乙醇胺-硝酸钙体系浸取土壤中8种重金属有效态.
冶金分析,2020,40(2):12-17
|
CSCD被引
3
次
|
|
|
|
16.
黄立章. 土壤重金属生物有效性评价方法.
江西农业学报,2009,21(4):77-89
|
CSCD被引
1
次
|
|
|
|
17.
吴利军.
梯度扩散薄膜技术(DGT)应用于土壤重金属有效态测定的分析研究. 14,2017:449-455
|
CSCD被引
1
次
|
|
|
|
18.
刘玉荣. 几种萃取剂对土壤中重金属生物有效部分的萃取效果.
生态环境,2002,11(3):245-247
|
CSCD被引
3
次
|
|
|
|
19.
包正铎. 贵州万山汞矿区污染土壤中汞的形态分布特征.
生态学杂志,2011,30(5):907-913
|
CSCD被引
45
次
|
|
|
|
20.
赵首萍. 不同提取剂对土壤有效态Hg提取的效果浅析.
浙江农业科学,2020,61(10):2176-2181
|
CSCD被引
2
次
|
|
|
|
|