Characterization of FeCrAlY Thin Film Deposited by Magnetron Sputtering and Its Corrosion Resistance under High-temperature Water Vapor Environment
磁控溅射法制备FeCrAlY薄膜表征及其在高温水环境中的抗腐蚀性能研究
查看参考文献23篇
文摘
|
The work aims to deposit FeCrAlY thin film on Zr alloy substrate and use it as a protection layer to alleviate the corrosion under high-temperature water vapor environment. The FeCrAlY thin film was deposited on Zr and glass substrate via magnetron sputtering method. The XRD and SEM were used to characterize the structure and morphology of FeCrAlY thin film. The XPS was employed to investigate the valence states change before and after corrosion under high-temperature water vapor environment. The corrosion property of Zr and FeCrAlY thin film coated on Zr was tested under high-temperature water vapor environment of 900 ℃. The results showed that FeCrAlY thin film coated on Zr displayed better anticorrosion property compared to Zr. The weight gain of FeCrAlY thin film coated on Zr was nearly 30% less than that of Zr. The FeCrAlY thin film deposited on Zr via magnetron sputtering method plays the role of protection layer under high-temperature water vapor environment. During the process of corrosion, Al_2O_3 passivation layer separates out with help of Cr because of “third element effect”. The separated Al_2O_3 layer plays as protection layer and inhibits corrosion. |
其他语种文摘
|
目的在锆合金基底上沉积FeCrAlY薄膜,研究其高温水蒸气环境中的抗腐蚀性能。方法采用磁控溅射的方法在锆合金基底与玻璃基底上沉积FeCrAlY薄膜。使用XRD、SEM对沉积的FeCrAlY薄膜进行结构、形貌表征,使用XPS对FeCrAlY薄膜高温水蒸气腐蚀前后的元素价态变化进行表征和分析。结果在900 ℃高温水蒸气环境中测试了锆合金与锆合金沉积FeCrAlY薄膜的腐蚀性能。发现与锆合金相比,锆合金沉积FeCrAlY薄膜的样品表现出了良好的抗腐蚀性能,氧化增重少于锆合金样品的30%。结论磁控溅射法制备的FeCrAlY薄膜在高温水蒸气环境下对锆合金基底起到了很好的保护作用。高温水蒸气腐蚀过程中,由于第三元素效应的发生,即FeCrAlY薄膜中的铬元素促使铝元素析出到FeCrAlY薄膜表面,在高温水蒸气环境下氧化生成氧化铝钝化膜,氧化铝钝化膜起到了阻挡层的作用,减缓了腐蚀的进行。 |
来源
|
表面技术
,2020,49(1):72-78 【核心库】
|
DOI
|
10.16490/j.cnki.issn.1001-3660.2020.01.009
|
关键词
|
magnetron sputtering
;
Zr alloy
;
FeCrAlY thin film
;
high temperature water vapor environment
;
Al_2O_3 passivation layer
;
corrosion property
|
地址
|
1.
School of Environment and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159
2.
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1001-3660 |
学科
|
金属学与金属工艺 |
基金
|
Supported by Shenyang Double Hundred Project Initiated by Shenyang Government
;
the Funding of Shenyang LigongUniversity's Research Support Program for High-level Talents
|
文献收藏号
|
CSCD:6731070
|
参考文献 共
23
共2页
|
1.
Gong X. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program.
Journal of nuclear materials,2016,482:218-228
|
CSCD被引
8
次
|
|
|
|
2.
Zinkle S J. Accident tolerant fuels for LWRs: A perspective.
Journal of nuclear materials,2014,448:374-379
|
CSCD被引
85
次
|
|
|
|
3.
Lim J. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors.
Journal of nuclear materials,2013,441:650-660
|
CSCD被引
11
次
|
|
|
|
4.
Anderoglu O. Mechanical performance of ferritic martensitic steels for high dose applications in advanced nuclear reactors.
Metallurgical and materials transactions A,2013,44:70-83
|
CSCD被引
4
次
|
|
|
|
5.
Klueh R L. Ferritic/martensitic steels for next-generation reactors.
Journal of nuclear materials,2007,371:37-52
|
CSCD被引
67
次
|
|
|
|
6.
Field K G. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys.
Journal of nuclear materials,2015,465:746-755
|
CSCD被引
20
次
|
|
|
|
7.
Cheng B. Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding.
Nuclear engineering and technology,2016,48:16-25
|
CSCD被引
11
次
|
|
|
|
8.
Rivari A K. Compatibility of surfacecoated steels refractory metals and ceramics to high temperature lead-bismuth eutectic.
Progress in nuclear energy,2008,50:560-566
|
CSCD被引
7
次
|
|
|
|
9.
Deck C P. Characterization of SiC-SiC composites for accident tolerant fuel cladding.
Journal of nuclear materials,2015,466:667-681
|
CSCD被引
17
次
|
|
|
|
10.
Tang C C. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings.
Corrosion reviews,2017,35:141-165
|
CSCD被引
28
次
|
|
|
|
11.
Wang Y D. Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr Fuel cladding under loss-of-coolant accident conditions.
Surface and coatings technology,2018,344:141-148
|
CSCD被引
24
次
|
|
|
|
12.
Kim H G. Adhesion property and high-temperature oxidation behavior of Cr-coated zircaloy-4 cladding tube prepared by 3D laser coating.
Journal of nuclear materials,2015,465:531-539
|
CSCD被引
59
次
|
|
|
|
13.
Park D J. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions.
Journal of nuclear materials,2016,482:75-82
|
CSCD被引
24
次
|
|
|
|
14.
Wang Y. Oxidation resistance improvement of Zr-4 alloy in 1000℃steam environment using ZrO_2/FeCrAl bilayer coating.
Surface and coatings technology,2018,349:807-815
|
CSCD被引
15
次
|
|
|
|
15.
Airiskallio E. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element.
Corrosion science,2010,52:3394-3404
|
CSCD被引
18
次
|
|
|
|
16.
Badini C. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism.
Surface and coatings technology,2001,135:291-298
|
CSCD被引
21
次
|
|
|
|
17.
Messaoudi K. Diffusion and growth mechanism of Al_2O_3 scales on ferritic Fe-Cr-Al alloys.
Materials science and engineering: A,1998,247:248-262
|
CSCD被引
6
次
|
|
|
|
18.
Lee K S. Growth of α-alumina oxide film in high temperature oxidation of Fe-20Cr-5Al alloy thin strip.
Scripta materialia,1998,39:1151-1155
|
CSCD被引
4
次
|
|
|
|
19.
Zhang Z G. Effect of surface roughness on the development of protective Al_2O_3 on Fe-10Al (at.%) alloys containing 0~10at.% Cr.
Applied surface science,2006,253:881-888
|
CSCD被引
8
次
|
|
|
|
20.
Liu F. Early stages of the oxidation of a FeCrAlRE alloy (kanthal AF) at 900℃: A detailed microstructural investigation.
Corrosion science,2008,50:2272-2281
|
CSCD被引
7
次
|
|
|
|
|