水热条件下方解石-磷灰石转化机制影响因素初探
Apatite formation from calcite under hydrothermal environment: transforming mechanisms and influencing factors
查看参考文献22篇
文摘
|
磷灰石广泛存在于生物体和各种地质体中,其形成机制随物理化学条件变化而变化。本文采用Raman光谱、扫描电镜和X射线谱仪等技术研究了水热条件下,方解石向羟基磷灰石转变过程中矿物物相的变化,探讨了羟基磷灰石的形成机制。结果表明,在弱酸性环境下,方解石中的碳酸根离子先被溶液中的磷酸氢根离子交代,形成二水合磷酸氢钙(DCPD),随后部分DCPD经过脱水脱氢作用逐步转变为羟基磷灰石(HAP),还有部分磷酸氢钙溶解在水溶液中;但在碱性环境下,仅有少量的方解石转变为HAP。由此可知,磷酸盐流体中,羟基磷灰石替代方解石的生长是一种溶解-沉淀耦合的过程。低温条件下,酸性缓冲溶液条件首先生成DCPD,而后转变为HAP,碱性条件直接生成HAP。温度升高能加速方解石向HAP的转变,并且未发现DCPD的中间相。 |
其他语种文摘
|
Apatite widely occurs in organisms and various rocks,and its formation mechanisms change with changing physical and chemical conditions. In this study,Raman spectroscopy and field emission scanning electron microscope with energy spectrometer technology were used to study the phase transition in the replacement of calcite by hydroxyapatite in hydrothermal conditions. Formation mechanisms of hydroxyapatite were also discussed. Results show that hydrogen phosphate ion from the solution replaces carbonic acid ion of calcite first in weakly acid environment and forms dicalcium phosphate dehydrate(DCPD). Some of the DCPD become hydroxyapatite (HAP) progressively through the dehydration and dehydrogenation process; others would dissolve in aqueous solution. However,in alkaline environment,only a small fraction of calcite is replaced by HAP. Therefore,the replacement reactions from calcite to hydroxyapatite are explained by“the coupled dissolution-reprecipitation”mechanism. Under low temperature condition,acid buffer solution promotes the formation of DCPD and alkaline condition,on the other hand facilitates the formation of HAP. High temperature accelerates the replacement of calcite by HAP and no DCPD phase was observed in this condition. |
来源
|
矿物学报
,2018,38(1):58-63 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2018.007
|
关键词
|
羟基磷灰石
;
方解石
;
水热反应
;
相变
;
溶解-沉淀耦合机制
|
地址
|
1.
南京大学地球科学与工程学院, 内生金属成矿机制研究国家重点实验室, 江苏, 南京, 210046
2.
中国科学院广州地球化学研究所, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
国家大学生创新创业训练计划
|
文献收藏号
|
CSCD:6221055
|
参考文献 共
22
共2页
|
1.
Filippelli G M. The global phosphorus cycle.
Reviews in Mineralogy and Geochemistry,2002,48(1):391-425
|
CSCD被引
8
次
|
|
|
|
2.
Kasioptas A. Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates.
Geochimica et Cosmochimica Acta,2011,75(12):3486-3500
|
CSCD被引
1
次
|
|
|
|
3.
Putnis A. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms.
Mineralogical Magazine,2002,66(5):689-708
|
CSCD被引
32
次
|
|
|
|
4.
Putnis A. Mineral replacement reactions.
Reviews in Mineralogy and Geochemistry,2009,70(1):87-124
|
CSCD被引
39
次
|
|
|
|
5.
Roy D M. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange.
Nature,1974,247(5438):220-222
|
CSCD被引
19
次
|
|
|
|
6.
Felicio-Fernandes G. Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation.
Quimica Nova,2000,23(4):441-446
|
CSCD被引
2
次
|
|
|
|
7.
Lemos A F. Hydroxyapatite Nano-powders produced hydrothermally from nacreous material.
Journal of the European Ceramic Society,2006,26(16):3639-3646
|
CSCD被引
6
次
|
|
|
|
8.
Guo Y P. Fabrication and characterization of hydroxycarbonate apatite with mesoporous structure.
Microporous and Mesoporous Materials,2009,118(1/3):480-488
|
CSCD被引
2
次
|
|
|
|
9.
Guillemin G. Comparison of coral resorption and bone apposition with two natural corals of different porosities.
Journal of Biomedical Materials Research,1989,23(7):765-779
|
CSCD被引
4
次
|
|
|
|
10.
Muller-Mai C. Substitution of natural coral by cortical bone and bone marrow in the rat femur: Part II: SEM,TEM,and in situ hybridization.
Journal of Materials Science: Materials in Medicine,1996,7(8):479-488
|
CSCD被引
3
次
|
|
|
|
11.
Onuma K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms.
Progress in Crystal Growth and Characterization of Materials,2006,52(3):223-245
|
CSCD被引
5
次
|
|
|
|
12.
Ames L L. The genesis of carbonate apatites.
Economic Geology,1959,54(5):829-841
|
CSCD被引
2
次
|
|
|
|
13.
D'anglejan B F. Origin of marine phosphorites off Baja California,Mexico.
Marine Geology,1967,5(1):15-44
|
CSCD被引
2
次
|
|
|
|
14.
Ishikawa K. Fabrication of low crystalline B-type carbonate apatite block from low crystalline calcite block.
Journal of the Ceramic Society of Japan,2010,118(1377):341-344
|
CSCD被引
1
次
|
|
|
|
15.
Tas A C. Granules of brushite and octacalcium phosphate from marble.
Journal of the American Ceramic Society,2011,94(11):3722-3726
|
CSCD被引
1
次
|
|
|
|
16.
Kim I Y. Hydroxyapatite formation from calcium carbonate single crystal under hydrothermal condition: effects of processing temperature.
Ceramics International,2016,42(1):1886-1890
|
CSCD被引
4
次
|
|
|
|
17.
Young R A. Structures of biological minerals.
Biological Mineralization and Demineralization,1982:101-141
|
CSCD被引
2
次
|
|
|
|
18.
郭英. 水热条件下羟基磷灰石纳米晶形成机理.
中国民航大学学报,2007,25(4):26-30
|
CSCD被引
4
次
|
|
|
|
19.
Johnsson M S A. The role of brushite and octacalcium phosphate in apatite formation.
Critical Reviews in Oral Biology & Medicine,1992,3(1):61-82
|
CSCD被引
2
次
|
|
|
|
20.
Elliott J C. Apatite structures.
Advances in X-ray Analysis,Volume 45. Newton Square, International Centre for Diffraction Data. 45,2002:172-181
|
CSCD被引
1
次
|
|
|
|
|